Difference between revisions of "User:Lum Pfohl/LSL Goodies/Snippet/Align Prim Between Two Points"

From Second Life Wiki
Jump to: navigation, search
m (Align Prim Between Two Points)
m
Line 5: Line 5:
 
==Align Prim Between Two Points==
 
==Align Prim Between Two Points==
 
<div style="padding: 0.5em">
 
<div style="padding: 0.5em">
Occasionally, I have a need to rez a prim such as a cylinder, between two points, lined up in that direction.  The math for it is ridiculously easy, but maddeningly difficult to get right.  So I've documented it below (the text coloring is not standard LSL - rather it is the coloring applied by my UltraEdit text editor.  For a link to a sample 'wordfile' file UltraEdit, [[User:Lum Pfohl/LSL_Syntax_Highlighting_For_UltraEdit|follow this link]].
+
Occasionally, I have a need to rez a prim such as a cylinder or a stick between two points, lined up in that direction.  The math for it is ridiculously easy, but maddeningly difficult to get right.  So I've documented it below.
  
<font face='courier'>rez (<font color='blue'>vector</font> v1, <font color='blue'>vector</font> v2) {<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// Determine the midpoint between the two vectors to rez the prim</font><br/>
 
&nbsp;&nbsp;<font color='blue'>vector</font> rezPos = (v1 + v2) / <font color='red'>2.0</font> + <font color='red'>llGetPos</font>();<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// Setup for determining the rotation at which the prim will be rezzed<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;// First, apply any constant transformations to the prim.  In the example<br/>
 
&nbsp;&nbsp;// below, the rezzed prim is a cylinder (shaped into a 'stick').  Tilt<br/>
 
&nbsp;&nbsp;// the 'stick' which is aligned vertically by default - sideways by<br/>
 
&nbsp;&nbsp;// 90 degrees (or PI/2)</font><br/>
 
&nbsp;&nbsp;<font color='blue'>rotation</font> rezRot = <font color='red'>llEuler2Rot</font>(<<font color='red'>0.0</font>, <font color='green'>PI_BY_TWO</font>, <font color='red'>0.0</font>>)<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// Get a Unit Vector that points along the space  v1 -> v2</font><br/>
 
&nbsp;&nbsp;<font color='blue'>vector</font> difference = <font color='red'>llVecNorm</font>(v2 - v1);<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// Now calculate the new prim rotation by the 'angle' made between<br/>
 
&nbsp;&nbsp;// an Unit Vector in the X-axis, and the one calculated above.  This value<br/>
 
&nbsp;&nbsp;// will be multiplied (we multiply rotations values to rotate the previous<br/>
 
&nbsp;&nbsp;// value).  This aligns the prim lengthwise between the two points, v1 v2</font><br/>
 
&nbsp;&nbsp;rezRot *= <font color='red'>llRotBetween</font>(<<font color='red'>1.0</font>, <font color='red'>0.0</font>, <font color='red'>0.0</font>>, difference);<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// Optionally, we will calculate the distance between the two points and<br/>
 
&nbsp;&nbsp;// send it to the rezzed object as a value.  Unfortunately, we can only<br/>
 
&nbsp;&nbsp;// send integer values, but by multiplying the float value by 1000, we<br/>
 
&nbsp;&nbsp;// can capture sufficient significant digits to be passed as an integer<br/>
 
&nbsp;&nbsp;// The rezzed prim will have an 'on_rez(integer param)' event, which<br/>
 
&nbsp;&nbsp;// can take the incoming param value and cast it to a float then divide<br/>
 
&nbsp;&nbsp;// by 1000.0 to get the length.</font><br/>
 
&nbsp;&nbsp;<font color='blue'>integer</font> resLength = (<font color='blue'>integer</font>)(<font color='red'>llVecMag</font>(v2 - v1) * <font color='red'>1000.0</font>);<br/>
 
&nbsp;&nbsp;<br/>
 
&nbsp;&nbsp;<font color='orange'>// All this setup - now we finally rez the prim.  The ZERO_VECTOR value<br/>
 
&nbsp;&nbsp;// is provided as the rezzed speed.  We don't want our prim to fly away.<br/>
 
&nbsp;&nbsp;// The rezzed object is called 'pentaedge' in my example.</font><br/>
 
&nbsp;&nbsp;<font color='red'>llRezObject</font>("<font color='gray'>pentaedge</font>", rezPos, <font color='green'>ZERO_VECTOR</font>, rezRot, resLength);<br/>
 
}<br/></font>
 
  
 +
<lsl>
 +
rez (vector v1, vector v2) {
 +
 
 +
  // Determine the midpoint between the two vectors to rez the prim
 +
  vector rezPos = (v1 + v2) / 2.0 + llGetPos();
 +
 
 +
  // Setup for determining the rotation at which the prim will be rezzed
 +
 
 +
  // First, apply any constant transformations to the prim. In the example
 +
  // below, the rezzed prim is a cylinder (shaped into a 'stick'). Tilt
 +
  // the 'stick' which is aligned vertically by default - sideways by
 +
  // 90 degrees (or PI/2)
 +
  rotation rezRot = llEuler2Rot(<0.0, PI_BY_TWO, 0.0>)
 +
 
 +
  // Get a Unit Vector that points along the space v1 -> v2
 +
  vector difference = llVecNorm(v2 - v1);
 +
 
 +
  // Now calculate the new prim rotation by the 'angle' made between
 +
  // an Unit Vector in the X-axis, and the one calculated above. This value
 +
  // will be multiplied (we multiply rotations values to rotate the previous
 +
  // value). This aligns the prim lengthwise between the two points, v1 v2
 +
  rezRot *= llRotBetween(<1.0, 0.0, 0.0>, difference);
 +
 
 +
  // Optionally, we will calculate the distance between the two points and
 +
  // send it to the rezzed object as a value. Unfortunately, we can only
 +
  // send integer values, but by multiplying the float value by 1000, we
 +
  // can capture sufficient significant digits to be passed as an integer
 +
  // The rezzed prim will have an 'on_rez(integer param)' event, which
 +
  // can take the incoming param value and cast it to a float then divide
 +
  // by 1000.0 to get the length.
 +
  integer resLength = (integer)(llVecMag(v2 - v1) * 1000.0);
 +
 
 +
  // All this setup - now we finally rez the prim. The ZERO_VECTOR value
 +
  // is provided as the rezzed speed. We don't want our prim to fly away.
 +
  // The rezzed object is called 'pentaedge' in my example.
 +
  llRezObject("pentaedge", rezPos, ZERO_VECTOR, rezRot, resLength);
 +
}
 +
</lsl>
 +
 +
 +
This is handy if you'd like to rez geometric shapes of your own.  Below is a series of scripts to rez a Dodecahedron above the rezzer...
 +
 +
<B>This is the main rezzer script to go into a simple prim</B>
 +
<lsl>
 +
vector offset =  <0.0, 0.0, 2.0>;
 +
 +
rez (vector v1, vector v2) {
 +
 +
  // Determine the midpoint between the two vectors to rez the prim
 +
  vector rezPos = (v1 + v2) / 2.0 + llGetPos();
 +
 +
 +
  // Setup for determining the rotation at which the prim will be rezzed
 +
  // First, apply any constant transformations to the prim.  In the example
 +
  // below, the rezzed prim is a cylinder (shaped into a 'stick').  Tilt
 +
  // the 'stick' which is aligned vertically by default - sideways by
 +
  // 90 degrees (or PI/2)
 +
  rotation rezRot = llEuler2Rot(<0.0, PI_BY_TWO, 0.0>);
 +
 +
  // Get a Unit Vector that points along the space  v1 -> v2
 +
  vector difference = llVecNorm(v2 - v1);
 +
 +
  // Now calculate the new prim rotation by the 'angle' made between
 +
  // an Unit Vector in the X-axis, and the one calculated above.  This value
 +
  // will be multiplied (we multiply rotations values to rotate the previous
 +
  // value).  This aligns the prim lengthwise between the two points, v1 v2
 +
  rezRot *= llRotBetween(<1.0, 0.0, 0.0>, difference);
 +
 +
  // Optionally, we will calculate the distance between the two points and
 +
  // send it to the rezzed object as a value.  Unfortunately, we can only
 +
  // send integer values, but by multiplying the float value by 1000, we
 +
  // can capture sufficient significant digits to be passed as an integer
 +
  // The rezzed prim will have an 'on_rez(integer param)' event, which
 +
  // can take the incoming param value and cast it to a float then divide
 +
  // by 1000.0 to get the length.
 +
  integer resLength = (integer)(llVecMag(v2 - v1) * 1000.0);
 +
 +
  // All this setup - now we finally rez the prim.  The ZERO_VECTOR value
 +
  // is provided as the rezzed speed.  We don't want our prim to fly away.
 +
  // The rezzed object is called 'pentaedge' in my example.
 +
  llRezObject("pentaedge", rezPos, ZERO_VECTOR, rezRot, resLength);
 +
}
 +
 +
 +
default
 +
{
 +
  state_entry() {
 +
    llSay(0, "Hello, Avatar!");
 +
  }
 +
 
 +
  touch_start(integer total_number) {
 +
   
 +
    // define the vertices
 +
    vector v0  = < 0.607,  0.000,  0.795> + offset;
 +
    vector v1  = < 0.188,  0.577,  0.795> + offset;
 +
    vector v2  = <-0.491,  0.357,  0.795> + offset;
 +
    vector v3  = <-0.491, -0.357,  0.795> + offset;
 +
    vector v4  = < 0.188, -0.577,  0.795> + offset;
 +
    vector v5  = < 0.982,  0.000,  0.188> + offset;
 +
    vector v6  = < 0.304,  0.934,  0.188> + offset;
 +
    vector v7  = <-0.795,  0.577,  0.188> + offset;
 +
    vector v8  = <-0.795, -0.577,  0.188> + offset;
 +
    vector v9  = < 0.304, -0.934,  0.188> + offset;
 +
    vector v10 = < 0.795,  0.577, -0.188> + offset;
 +
    vector v11 = <-0.304,  0.934, -0.188> + offset;
 +
    vector v12 = <-0.982,  0.000, -0.188> + offset;
 +
    vector v13 = <-0.304, -0.934, -0.188> + offset;
 +
    vector v14 = < 0.795, -0.577, -0.188> + offset;
 +
    vector v15 = < 0.491,  0.357, -0.795> + offset;
 +
    vector v16 = <-0.188,  0.577, -0.795> + offset;
 +
    vector v17 = <-0.607,  0.000, -0.795> + offset;
 +
    vector v18 = <-0.188, -0.577, -0.795> + offset;
 +
    vector v19 = < 0.491, -0.357, -0.795> + offset;
 +
 +
    // res spheres in the vertices   
 +
    llRezObject("sphere", llGetPos() + v0 , ZERO_VECTOR, ZERO_ROTATION, 0 );
 +
    llRezObject("sphere", llGetPos() + v1 , ZERO_VECTOR, ZERO_ROTATION, 1 );
 +
    llRezObject("sphere", llGetPos() + v2 , ZERO_VECTOR, ZERO_ROTATION, 2 );
 +
    llRezObject("sphere", llGetPos() + v3 , ZERO_VECTOR, ZERO_ROTATION, 3 );
 +
    llRezObject("sphere", llGetPos() + v4 , ZERO_VECTOR, ZERO_ROTATION, 4 );
 +
    llRezObject("sphere", llGetPos() + v5 , ZERO_VECTOR, ZERO_ROTATION, 5 );
 +
    llRezObject("sphere", llGetPos() + v6 , ZERO_VECTOR, ZERO_ROTATION, 6 );
 +
    llRezObject("sphere", llGetPos() + v7 , ZERO_VECTOR, ZERO_ROTATION, 7 );
 +
    llRezObject("sphere", llGetPos() + v8 , ZERO_VECTOR, ZERO_ROTATION, 8 );
 +
    llRezObject("sphere", llGetPos() + v9 , ZERO_VECTOR, ZERO_ROTATION, 9 );
 +
    llRezObject("sphere", llGetPos() + v10, ZERO_VECTOR, ZERO_ROTATION, 10);
 +
    llRezObject("sphere", llGetPos() + v11, ZERO_VECTOR, ZERO_ROTATION, 11);
 +
    llRezObject("sphere", llGetPos() + v12, ZERO_VECTOR, ZERO_ROTATION, 12);
 +
    llRezObject("sphere", llGetPos() + v13, ZERO_VECTOR, ZERO_ROTATION, 13);
 +
    llRezObject("sphere", llGetPos() + v14, ZERO_VECTOR, ZERO_ROTATION, 14);
 +
    llRezObject("sphere", llGetPos() + v15, ZERO_VECTOR, ZERO_ROTATION, 15);
 +
    llRezObject("sphere", llGetPos() + v16, ZERO_VECTOR, ZERO_ROTATION, 16);
 +
    llRezObject("sphere", llGetPos() + v17, ZERO_VECTOR, ZERO_ROTATION, 17);
 +
    llRezObject("sphere", llGetPos() + v18, ZERO_VECTOR, ZERO_ROTATION, 18);
 +
    llRezObject("sphere", llGetPos() + v19, ZERO_VECTOR, ZERO_ROTATION, 19);
 +
 +
    // Rez the edges using the above function
 +
    rez(v0, v1);
 +
    rez(v1, v2);
 +
    rez(v2, v3);
 +
    rez(v3, v4);
 +
    rez(v4, v0);
 +
 +
    rez(v0, v5);
 +
    rez(v1, v6);
 +
    rez(v2, v7);
 +
    rez(v3, v8);
 +
    rez(v4, v9);
 +
 +
    rez(v5, v10);
 +
    rez(v6, v10);
 +
    rez(v6, v11);
 +
    rez(v7, v11);
 +
    rez(v7, v12);
 +
    rez(v8, v12);
 +
    rez(v8, v13);
 +
    rez(v9, v13);
 +
    rez(v9, v14);
 +
    rez(v5, v14);
 +
 +
    rez(v10, v15);
 +
    rez(v11, v16);
 +
    rez(v12, v17);
 +
    rez(v13, v18);
 +
    rez(v14, v19);
 +
 +
    rez(v15, v16);
 +
    rez(v16, v17);
 +
    rez(v17, v18);
 +
    rez(v18, v19);
 +
    rez(v19, v15);
 +
  }
 +
}
 +
</lsl>
 +
 +
<B>Put the following script into a small SPHERE object and name it 'sphere' and add it to the rezzer object inventory.</B>
 +
<lsl>
 +
default
 +
{
 +
 
 +
  // Script to go into a 'sphere' object.  Name of object must be "sphere"
 +
 
 +
  // Upon being rezzed, display a number above the prim for 90 seconds
 +
  on_rez(integer parm) {
 +
  llSetText((string)parm, <1.0, 1.0, 1.0>, 1.0);
 +
  llSetTimerEvent(90.0);
 +
  }
 +
 
 +
  // After 90 seconds, clear the text and delete the script
 +
  timer() {
 +
  llSetText("", <1.0, 1.0, 1.0>, 1.0);
 +
  llSetTimerEvent(0.0);
 +
  llRemoveInventory("New Script");
 +
  }
 +
}
 +
</lsl>
 +
 +
 +
<B>Put the following script into a CYLINDER object and name it 'pentaedge' and add it to the rezzer object inventory.</B>
 +
<lsl>
 +
default
 +
{
 +
  // Script to go into a 'cylinder' object.  Name of object must be "pentaedge"
 +
 +
  // Upon being rezzed, set the length of the
 +
  on_rez(integer parm) {
 +
 +
    // If we've rezzed the prim without a parameter (like from the inventory)
 +
    // then do nothing.  Else set the prim's dimensions and delete the script
 +
    if (parm != 0) {
 +
      // Take the incoming length coded as an integer (from the rez() function above)
 +
      // and convert it back to a float value
 +
      vector length = (float)parm / 1000.0;
 +
 +
      // Set the prim's (dimension to be 0.05 diameter by 'length' meters
 +
      llSetPrimitiveParams([PRIM_SIZE, <0.05, 0.05, length>]);
 +
 +
      // Delete this script
 +
      llRemoveInventory("New Script");
 +
    }
 +
  }
 +
}
 +
</lsl>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 09:22, 22 September 2009

Align Prim Between Two Points

Occasionally, I have a need to rez a prim such as a cylinder or a stick between two points, lined up in that direction. The math for it is ridiculously easy, but maddeningly difficult to get right. So I've documented it below.


<lsl> rez (vector v1, vector v2) {

 // Determine the midpoint between the two vectors to rez the prim
 vector rezPos = (v1 + v2) / 2.0 + llGetPos();
 
 // Setup for determining the rotation at which the prim will be rezzed
 
 // First, apply any constant transformations to the prim. In the example
 // below, the rezzed prim is a cylinder (shaped into a 'stick'). Tilt
 // the 'stick' which is aligned vertically by default - sideways by
 // 90 degrees (or PI/2)
 rotation rezRot = llEuler2Rot(<0.0, PI_BY_TWO, 0.0>)
 
 // Get a Unit Vector that points along the space v1 -> v2
 vector difference = llVecNorm(v2 - v1);
 
 // Now calculate the new prim rotation by the 'angle' made between
 // an Unit Vector in the X-axis, and the one calculated above. This value
 // will be multiplied (we multiply rotations values to rotate the previous
 // value). This aligns the prim lengthwise between the two points, v1 v2
 rezRot *= llRotBetween(<1.0, 0.0, 0.0>, difference);
 
 // Optionally, we will calculate the distance between the two points and
 // send it to the rezzed object as a value. Unfortunately, we can only
 // send integer values, but by multiplying the float value by 1000, we
 // can capture sufficient significant digits to be passed as an integer
 // The rezzed prim will have an 'on_rez(integer param)' event, which
 // can take the incoming param value and cast it to a float then divide
 // by 1000.0 to get the length.
 integer resLength = (integer)(llVecMag(v2 - v1) * 1000.0);
 
 // All this setup - now we finally rez the prim. The ZERO_VECTOR value
 // is provided as the rezzed speed. We don't want our prim to fly away.
 // The rezzed object is called 'pentaedge' in my example.
 llRezObject("pentaedge", rezPos, ZERO_VECTOR, rezRot, resLength);

} </lsl>


This is handy if you'd like to rez geometric shapes of your own. Below is a series of scripts to rez a Dodecahedron above the rezzer...

This is the main rezzer script to go into a simple prim <lsl> vector offset = <0.0, 0.0, 2.0>;

rez (vector v1, vector v2) {

 // Determine the midpoint between the two vectors to rez the prim
 vector rezPos = (v1 + v2) / 2.0 + llGetPos();


 // Setup for determining the rotation at which the prim will be rezzed
 // First, apply any constant transformations to the prim.  In the example
 // below, the rezzed prim is a cylinder (shaped into a 'stick').  Tilt
 // the 'stick' which is aligned vertically by default - sideways by
 // 90 degrees (or PI/2)
 rotation rezRot = llEuler2Rot(<0.0, PI_BY_TWO, 0.0>);
 // Get a Unit Vector that points along the space   v1 -> v2
 vector difference = llVecNorm(v2 - v1);
 // Now calculate the new prim rotation by the 'angle' made between
 // an Unit Vector in the X-axis, and the one calculated above.  This value
 // will be multiplied (we multiply rotations values to rotate the previous
 // value).  This aligns the prim lengthwise between the two points, v1 v2
 rezRot *= llRotBetween(<1.0, 0.0, 0.0>, difference);
 // Optionally, we will calculate the distance between the two points and
 // send it to the rezzed object as a value.  Unfortunately, we can only
 // send integer values, but by multiplying the float value by 1000, we
 // can capture sufficient significant digits to be passed as an integer
 // The rezzed prim will have an 'on_rez(integer param)' event, which
 // can take the incoming param value and cast it to a float then divide
 // by 1000.0 to get the length.
 integer resLength = (integer)(llVecMag(v2 - v1) * 1000.0);
 // All this setup - now we finally rez the prim.  The ZERO_VECTOR value
 // is provided as the rezzed speed.  We don't want our prim to fly away.
 // The rezzed object is called 'pentaedge' in my example.
 llRezObject("pentaedge", rezPos, ZERO_VECTOR, rezRot, resLength);

}


default {

 state_entry() {
   llSay(0, "Hello, Avatar!");
 }
 
 touch_start(integer total_number) {
   
   // define the vertices
   vector v0  = < 0.607,  0.000,  0.795> + offset;
   vector v1  = < 0.188,  0.577,  0.795> + offset;
   vector v2  = <-0.491,  0.357,  0.795> + offset;
   vector v3  = <-0.491, -0.357,  0.795> + offset;
   vector v4  = < 0.188, -0.577,  0.795> + offset;
   vector v5  = < 0.982,  0.000,  0.188> + offset;
   vector v6  = < 0.304,  0.934,  0.188> + offset;
   vector v7  = <-0.795,  0.577,  0.188> + offset;
   vector v8  = <-0.795, -0.577,  0.188> + offset;
   vector v9  = < 0.304, -0.934,  0.188> + offset;
   vector v10 = < 0.795,  0.577, -0.188> + offset;
   vector v11 = <-0.304,  0.934, -0.188> + offset;
   vector v12 = <-0.982,  0.000, -0.188> + offset;
   vector v13 = <-0.304, -0.934, -0.188> + offset;
   vector v14 = < 0.795, -0.577, -0.188> + offset;
   vector v15 = < 0.491,  0.357, -0.795> + offset;
   vector v16 = <-0.188,  0.577, -0.795> + offset;
   vector v17 = <-0.607,  0.000, -0.795> + offset;
   vector v18 = <-0.188, -0.577, -0.795> + offset;
   vector v19 = < 0.491, -0.357, -0.795> + offset;
   // res spheres in the vertices    
   llRezObject("sphere", llGetPos() + v0 , ZERO_VECTOR, ZERO_ROTATION, 0 );
   llRezObject("sphere", llGetPos() + v1 , ZERO_VECTOR, ZERO_ROTATION, 1 );
   llRezObject("sphere", llGetPos() + v2 , ZERO_VECTOR, ZERO_ROTATION, 2 );
   llRezObject("sphere", llGetPos() + v3 , ZERO_VECTOR, ZERO_ROTATION, 3 );
   llRezObject("sphere", llGetPos() + v4 , ZERO_VECTOR, ZERO_ROTATION, 4 );
   llRezObject("sphere", llGetPos() + v5 , ZERO_VECTOR, ZERO_ROTATION, 5 );
   llRezObject("sphere", llGetPos() + v6 , ZERO_VECTOR, ZERO_ROTATION, 6 );
   llRezObject("sphere", llGetPos() + v7 , ZERO_VECTOR, ZERO_ROTATION, 7 );
   llRezObject("sphere", llGetPos() + v8 , ZERO_VECTOR, ZERO_ROTATION, 8 );
   llRezObject("sphere", llGetPos() + v9 , ZERO_VECTOR, ZERO_ROTATION, 9 );
   llRezObject("sphere", llGetPos() + v10, ZERO_VECTOR, ZERO_ROTATION, 10);
   llRezObject("sphere", llGetPos() + v11, ZERO_VECTOR, ZERO_ROTATION, 11);
   llRezObject("sphere", llGetPos() + v12, ZERO_VECTOR, ZERO_ROTATION, 12);
   llRezObject("sphere", llGetPos() + v13, ZERO_VECTOR, ZERO_ROTATION, 13);
   llRezObject("sphere", llGetPos() + v14, ZERO_VECTOR, ZERO_ROTATION, 14);
   llRezObject("sphere", llGetPos() + v15, ZERO_VECTOR, ZERO_ROTATION, 15);
   llRezObject("sphere", llGetPos() + v16, ZERO_VECTOR, ZERO_ROTATION, 16);
   llRezObject("sphere", llGetPos() + v17, ZERO_VECTOR, ZERO_ROTATION, 17);
   llRezObject("sphere", llGetPos() + v18, ZERO_VECTOR, ZERO_ROTATION, 18);
   llRezObject("sphere", llGetPos() + v19, ZERO_VECTOR, ZERO_ROTATION, 19);
   // Rez the edges using the above function
   rez(v0, v1);
   rez(v1, v2);
   rez(v2, v3);
   rez(v3, v4);
   rez(v4, v0);
   rez(v0, v5);
   rez(v1, v6);
   rez(v2, v7);
   rez(v3, v8);
   rez(v4, v9);
   rez(v5, v10);
   rez(v6, v10);
   rez(v6, v11);
   rez(v7, v11);
   rez(v7, v12);
   rez(v8, v12);
   rez(v8, v13);
   rez(v9, v13);
   rez(v9, v14);
   rez(v5, v14);
   rez(v10, v15);
   rez(v11, v16);
   rez(v12, v17);
   rez(v13, v18);
   rez(v14, v19);
   rez(v15, v16);
   rez(v16, v17);
   rez(v17, v18);
   rez(v18, v19);
   rez(v19, v15);
 }

} </lsl>

Put the following script into a small SPHERE object and name it 'sphere' and add it to the rezzer object inventory. <lsl> default {

 // Script to go into a 'sphere' object.  Name of object must be "sphere"
 
 // Upon being rezzed, display a number above the prim for 90 seconds 
 on_rez(integer parm) {
 	llSetText((string)parm, <1.0, 1.0, 1.0>, 1.0);
 	llSetTimerEvent(90.0);
 }
 
 // After 90 seconds, clear the text and delete the script
 timer() {
 	llSetText("", <1.0, 1.0, 1.0>, 1.0);
 	llSetTimerEvent(0.0);
 	llRemoveInventory("New Script");
 }

} </lsl>


Put the following script into a CYLINDER object and name it 'pentaedge' and add it to the rezzer object inventory. <lsl> default {

 // Script to go into a 'cylinder' object.  Name of object must be "pentaedge"
 // Upon being rezzed, set the length of the
 on_rez(integer parm) {
   // If we've rezzed the prim without a parameter (like from the inventory)
   // then do nothing.  Else set the prim's dimensions and delete the script
   if (parm != 0) {
     // Take the incoming length coded as an integer (from the rez() function above)
     // and convert it back to a float value
     vector length = (float)parm / 1000.0;
     // Set the prim's (dimension to be 0.05 diameter by 'length' meters
     llSetPrimitiveParams([PRIM_SIZE, <0.05, 0.05, length>]);
     // Delete this script
     llRemoveInventory("New Script");
   }
 }

} </lsl>

Lum Pfohl 13:53, 21 September 2009 (UTC)

Lum's Quick Links
LumSelfPortrait.jpg
Click to Enlarge


Related topics

edit