Difference between revisions of "Random Gaussian Number Generator"

From Second Life Wiki
Jump to navigation Jump to search
(Needed to be attributed since it is a well known algorithm. Couldn't help but expand upon what was already provided.)
m (<lsl> tag to <source>)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Port of the Random Gaussian algorithm found on http://www.taygeta.com/random/gaussian.html<nowiki>.</nowiki>
Port of the Random Gaussian algorithm found on http://www.taygeta.com/random/gaussian.html<nowiki>.</nowiki>


<lsl>float randGauss(float mean, float stdev){
<source lang="lsl2">float randGauss(float mean, float stdev){
     float x, y, r2;
     float x, y, r2;
     do{//Generate a point in a unit circle that is not zero.
     do{//Generate a point in a unit circle that is not zero.
Line 11: Line 11:
     //Box-Muller transformation
     //Box-Muller transformation
     return mean + x * stdev * llSqrt( -2 * llLog(r2) / r2);
     return mean + x * stdev * llSqrt( -2 * llLog(r2) / r2);
}</lsl>
}</source>


<lsl>vector randGaussPair(vector center, float stdev){//2D
<source lang="lsl2">vector randGaussPair(vector center, float stdev){//2D
     //returns a random point on the x/y plain with a specified standard deviation from center.
     //returns a random point on the x/y plain with a specified standard deviation from center.
     float r2;
     float r2;
Line 24: Line 24:
     //Box-Muller transformation
     //Box-Muller transformation
     return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
     return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
}</lsl>
}</source>


==Box-Muller Transformation==
==Box-Muller Transformation==
Line 30: Line 30:


==3D==
==3D==
Is this correct?
Is this correct? Or does Box-Muller need to be adjusted?
<lsl>vector randGaussPoint(vector center, float stdev){//3D
<source lang="lsl2">vector randGaussPoint(vector center, float stdev){//3D
     //returns a random point with a specified standard deviation from center?
     //returns a random point with a specified standard deviation from center?
     float r2;
     float r2;
Line 42: Line 42:
     //Box-Muller transformation
     //Box-Muller transformation
     return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
     return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
}</lsl>
}</source>

Latest revision as of 07:43, 25 January 2015

Port of the Random Gaussian algorithm found on http://www.taygeta.com/random/gaussian.html.

float randGauss(float mean, float stdev){
    float x, y, r2;
    do{//Generate a point in a unit circle that is not zero.
        x = llFrand(2.) - 1;
        y = llFrand(2.) - 1;
        r2 = x * x + y * y;
    } while (r2 > 1.0 || r2 == 0);

    //Box-Muller transformation
    return mean + x * stdev * llSqrt( -2 * llLog(r2) / r2);
}
vector randGaussPair(vector center, float stdev){//2D
    //returns a random point on the x/y plain with a specified standard deviation from center.
    float r2;
    vector p;
    do{//Generate a point in a unit circle that is not zero.
        p = <llFrand(2.) - 1, llFrand(2.) - 1, 0>;
        r2 = p * p;//dot product
    } while (r2 > 1.0 || r2 == 0);

    //Box-Muller transformation
    return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
}

Box-Muller Transformation

The Box-Muller transformation is used to adjust the magnitude of the vector, remapping it to a standard deviation.

3D

Is this correct? Or does Box-Muller need to be adjusted?

vector randGaussPoint(vector center, float stdev){//3D
    //returns a random point with a specified standard deviation from center?
    float r2;
    vector p;
    do{//Generate a point in a unit sphere that is not zero.
        p = <llFrand(2.) - 1, llFrand(2.) - 1, llFrand(2.) - 1>;
        r2 = p * p;//dot product
    } while (r2 > 1.0 || r2 == 0);

    //Box-Muller transformation
    return center + (p * (stdev * llSqrt( -2 * llLog(r2) / r2)));
}