Difference between revisions of "Slerp"

From Second Life Wiki
Jump to navigation Jump to search
m
Line 1: Line 1:
{{Wikipedia|Slerp}}
<dl><dd>
<div id="box">
'''Slerp''' is shorthand for '''spherical linear interpolation''', introduced by Ken Shoemake in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant speed motion along a unit radius great circle arc, given the ends and an interpolation parameter between 0 and 1.
'''Slerp''' is shorthand for '''spherical linear interpolation''', introduced by Ken Shoemake in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant speed motion along a unit radius great circle arc, given the ends and an interpolation parameter between 0 and 1.
</div>
</dl>


The following slerp algorithm uses '''a''' and '''b''' for ends and '''t''' for the interpolation parameter.<br>
More detail: {{Wikipedia|Slerp}}.
 
The following slerp algorithm uses '''a''' and '''b''' for ends and '''t''' for the interpolation parameter.<br/>
To continue the rotation past the ends use a value for '''t''' outside the range '''{{interval|gte=0|lte=1|center=t}}'''.  
To continue the rotation past the ends use a value for '''t''' outside the range '''{{interval|gte=0|lte=1|center=t}}'''.  


<source lang="lsl2">rotation slerp( rotation a, rotation b, float t ) {
<syntaxhighlight lang="lsl2">rotation slerp( rotation a, rotation b, float t ) {
   return llAxisAngle2Rot( llRot2Axis(b /= a), t * llRot2Angle(b)) * a;
   return llAxisAngle2Rot( llRot2Axis(b /= a), t * llRot2Angle(b)) * a;
}//Written collectively, Taken from http://forums-archive.secondlife.com/54/3b/50692/1.html</source>
}//Written collectively, Taken from http://forums-archive.secondlife.com/54/3b/50692/1.html</syntaxhighlight>
Source: http://forums-archive.secondlife.com/54/3b/50692/1.html
Source: http://forums-archive.secondlife.com/54/3b/50692/1.html

Revision as of 06:31, 29 October 2023

Slerp is shorthand for spherical linear interpolation, introduced by Ken Shoemake in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant speed motion along a unit radius great circle arc, given the ends and an interpolation parameter between 0 and 1.

More detail: "Wikipedia logo"Slerp.

The following slerp algorithm uses a and b for ends and t for the interpolation parameter.
To continue the rotation past the ends use a value for t outside the range [0, 1].

rotation slerp( rotation a, rotation b, float t ) {
   return llAxisAngle2Rot( llRot2Axis(b /= a), t * llRot2Angle(b)) * a;
}//Written collectively, Taken from http://forums-archive.secondlife.com/54/3b/50692/1.html

Source: http://forums-archive.secondlife.com/54/3b/50692/1.html