Slerp: Difference between revisions

From Second Life Wiki
Jump to navigation Jump to search
Strife Onizuka (talk | contribs)
No edit summary
Strife Onizuka (talk | contribs)
mNo edit summary
Line 10: Line 10:


<lsl>rotation slerp( rotation a, rotation b, float t ) {
<lsl>rotation slerp( rotation a, rotation b, float t ) {
  float angle = llRot2Angle(b /= a);
   return llAxisAngle2Rot( llRot2Axis(b /= a), t * llRot2Angle(b)) * a;
  if (angle > PI)
      angle -= TWO_PI;
   return llAxisAngle2Rot( llRot2Axis(b), t * angle) * a;
}//Written collectively, Taken from http://forums.secondlife.com/showthread.php?p=536622</lsl>
}//Written collectively, Taken from http://forums.secondlife.com/showthread.php?p=536622</lsl>
Source: http://forums.secondlife.com/showthread.php?p=536622

Revision as of 09:37, 16 March 2009

"Wikipedia logo"Slerp

Slerp is shorthand for spherical linear interpolation, introduced by Ken Shoemake in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant speed motion along a unit radius great circle arc, given the ends and an interpolation parameter between 0 and 1.

The following slerp algorithm uses a and b for ends and t for the interpolation parameter.
To continue the rotation past the ends use a value for t outside the range [0, 1].

<lsl>rotation slerp( rotation a, rotation b, float t ) {

  return llAxisAngle2Rot( llRot2Axis(b /= a), t * llRot2Angle(b)) * a;

}//Written collectively, Taken from http://forums.secondlife.com/showthread.php?p=536622</lsl> Source: http://forums.secondlife.com/showthread.php?p=536622