Matrix Functions

From Second Life Wiki
Revision as of 17:41, 21 December 2015 by KyleFlynn Resident (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

<source lang="lsl2"> // // ******************************************************************************* // ******************************************************************************* // // Developed by KyleFlynn. // // This is free and open source code, protected by the GPLv3 license. // http://www.gnu.org/licenses/gpl-3.0.html // Accepting this code is conditioned upon accepting this license. // // // The following are some core linear algebra functions. // They are primarily used to develop and use 3D transformation matrices. // Note that ALL matrices herein are assumed to be 3x3 matrices. // And all of these 3x3 matrices are assumed to be stored as a 3 element list of vectors. // In all cases, the vectors are assumed to be column (not row) vectors. // // For all purposes herein, rows are numbered 1,2,3 and columns are also numbered 1,2,3 (both 1 based). // // As a last note, there are certainly faster ways to perform these function. // However, the following imposes an excellent organization when performing // complex 3D transformations. // // The available functions are: // // list MakeMatrix(float r1c1, float r1c2, float r1c3, r2c1, ... // float GetMatrixElement(list m, integer row, integer col) // list SetMatrixElement(list m, integer row, integer col, float value) // Returns a new matrix with the new element set. // list MultMatrices(list m1, list m2) // list DivideMatrices(list m1, list m2) // list BackDivideMatrices(list m1, list m2) // list InvertMatrix(list m) // list TransposeMatrix(list m) // integer MatrixIsZero(list m) // integer MatrixIsOrthogonal(list m) // integer MatrixIsNormal(list m) // // vector SetVectorElement(vector v, integer row, float value) // Returns a new vector with the new element set. // float GetVectorElement(vector v, integer row) // list MatrixFrom3ColVectors(vector v1, vector v2, vector v3) // list ZeroMatrix() // list UnitMatrix() // vector MakeVector(float x, float y, float z) // string VectorString(vector v) // For debugging. // string MatrixString(list m) // For debugging. // // ******************************************************************************* // ******************************************************************************* //

list MakeMatrix(float r1c1, float r1c2, float r1c3,

               float r2c1, float r2c2, float r2c3,  
               float r3c1, float r3c2, float r3c3) 

{

   return [<r1c1, r2c1, r3c1>, <r1c2, r2c2, r3c2>, <r1c3, r2c3, r3c3>];

}

float GetMatrixElement(list m, integer row, integer col) {

   return GetVectorElement(llList2Vector(m, col - 1), row);

}

list SetMatrixElement(list m, integer row, integer col, float value) // Returns a new matrix with the new element set. {

   return llListReplaceList(m, [SetVectorElement(llList2Vector(m, col - 1), row, value)], col - 1, col - 1);

}

float GetVectorElement(vector v, integer row) {

        if (row == 1) return v.x;
   else if (row == 2) return v.y;
   else if (row == 3) return v.z;
   //
   return 0;

}

vector SetVectorElement(vector v, integer row, float value) // Returns a new vector with the new element set. {

        if (row == 1) v.x = value;
   else if (row == 2) v.y = value;
   else if (row == 3) v.z = value;
   //
   return v;

}

list ZeroMatrix() {

   return MakeMatrix(0, 0, 0,
                     0, 0, 0,
                     0, 0, 0);

}

list UnitMatrix() {

   return MakeMatrix(1, 0, 0,
                     0, 1, 0,
                     0, 0, 1);

}

vector MakeVector(float x, float y, float z) {

   return <x, y, z>;

}

list MatrixFrom3ColVectors(vector v1, vector v2, vector v3) {

   return [v1, v2, v3];

}

list DivideMatrices(list m1, list m2) {

   // In Matlab, this is equivalent to:     X = m1 / m2;
   return MultMatrices(m1, InvertMatrix(m2));

}

list BackDivideMatrices(list m1, list m2) {

   // In Matlab, this is equivalent to:     X = m1 \ m2;
   return MultMatrices(InvertMatrix(m1), m2);

}

list MultMatrices(list m1, list m2) {

   // A matrix generalization of the vector dot product.
   // This procedure specifically multiplies 3x3 matrices, and returns a 3x3 matrix.
   integer r1Ptr;
   integer c1Ptr;
   integer c2Ptr;
   list m3 = ZeroMatrix();
   //
   for (r1Ptr = 1; r1Ptr <= 3; r1Ptr++)
   {    
       for (c2Ptr = 1; c2Ptr <=3; c2Ptr++)
       {
           for (c1Ptr = 1; c1Ptr <=3; c1Ptr++)
           {
               // This uses column ptr for row, but that's okay.
               m3 = SetMatrixElement(m3, r1Ptr, c2Ptr, GetMatrixElement(m3, r1Ptr, c2Ptr) + GetMatrixElement(m1, r1Ptr, c1Ptr) * GetMatrixElement(m2, c1Ptr, c2Ptr));
           }
       }
   }
   //
   return m3;

}

list InvertMatrix(list m) {

   // Don't forget that InvertMatrix(m)=TransposeMatrix(m) if m is orthonormal.
   // And TransposeMatrix(m) would be much faster.
   //
   // This ONLY works with 3x3 matrices.
   integer rPtr;
   integer cPtr;
   integer ptr;
   integer rPtr2;
   integer cPtr2;
   float PivotMax;
   float dNorm;
   float dSwap;
   integer swpCnt;
   //
   for (ptr = 1; ptr <= 3; ptr++)
   {
       // Search max pivot.
       rPtr2 = ptr;
       cPtr2 = ptr;
       PivotMax = 0;
       for (rPtr = ptr; rPtr <= 3; rPtr++)
       {
           for (cPtr = ptr; cPtr <= 3; cPtr++)
           {            
               if (llFabs(GetMatrixElement(m, rPtr, cPtr)) > PivotMax)
               {
                   rPtr2 = rPtr;
                   cPtr2 = cPtr;
                   PivotMax = llFabs(GetMatrixElement(m, rPtr, cPtr));
               }
           }
       }
       // Swap rows and columns.
       if (rPtr2 > ptr)
       {
           // Swap row.
           for (cPtr = 1; cPtr <= 3; cPtr++)
           {
               dSwap = GetMatrixElement(m, rPtr2, cPtr);
               m = SetMatrixElement(m, rPtr2, cPtr, GetMatrixElement(m, ptr, cPtr));
               m = SetMatrixElement(m, ptr, cPtr, dSwap);
           }
           swpCnt++;
           SetSwapDiag(swpCnt, 1, ptr);
           SetSwapDiag(swpCnt, 2, rPtr2);
           SetSwapDiag(swpCnt, 3, 1);
       }
       if (cPtr2 > ptr)
       {
           // Swap column.
           for (rPtr = 1; rPtr <= 3; rPtr++)
           {
               dSwap = GetMatrixElement(m, rPtr, cPtr2);
               m = SetMatrixElement(m, rPtr, cPtr2, GetMatrixElement(m, rPtr, ptr));
               m = SetMatrixElement(m, rPtr, ptr, dSwap);
           }
           swpCnt++;
           SetSwapDiag(swpCnt, 1, ptr);
           SetSwapDiag(swpCnt, 2, cPtr2);
           SetSwapDiag(swpCnt, 3, 2);
       }
       //
       // Check pivot 0.
       if (llFabs(GetMatrixElement(m, ptr, ptr)) <= 0)
       {
           llSay(DEBUG_CHANNEL, "Matrix inversion error, script is stopped.");
           rPtr = 1 / 0; // Crash the script.
       }
       //
       // Normalization.
       dNorm = GetMatrixElement(m, ptr, ptr);
       m = SetMatrixElement(m, ptr, ptr, 1);
       for (cPtr = 1; cPtr <= 3; cPtr++)
       {
           m = SetMatrixElement(m, ptr, cPtr, GetMatrixElement(m, ptr, cPtr) / dNorm);
       }
       // Linear reduction.
       for (rPtr = 1; rPtr <= 3; rPtr++)
       {
           if (rPtr != ptr && GetMatrixElement(m, rPtr, ptr) != 0)
           {
               dNorm = GetMatrixElement(m, rPtr, ptr);
               m = SetMatrixElement(m, rPtr, ptr, 0);
               for (cPtr = 1; cPtr <= 3; cPtr++)
               {
                   m = SetMatrixElement(m, rPtr, cPtr, GetMatrixElement(m, rPtr, cPtr) - dNorm * GetMatrixElement(m, ptr, cPtr));
               }
           }
       }
   }
   //
   // Un-Scramble rows.
   for (ptr = swpCnt; ptr >= 1; ptr--)
   {
       if (GetSwapDiag(ptr, 3) == 1)
       {
           // Swap column.
           for (rPtr = 1; rPtr <=3; rPtr++)
           {
               dSwap = GetMatrixElement(m, rPtr, GetSwapDiag(ptr, 2));
               m = SetMatrixElement(m, rPtr, GetSwapDiag(ptr, 2), GetMatrixElement(m, rPtr, GetSwapDiag(ptr, 1)));
               m = SetMatrixElement(m, rPtr, GetSwapDiag(ptr, 1), dSwap);
           }
       }
       else if (GetSwapDiag(ptr, 3) == 2)
       {
           // Swap row.
           for (cPtr = 1; cPtr <= 3; cPtr++)
           {
               dSwap = GetMatrixElement(m, GetSwapDiag(ptr, 2), cPtr);
               m = SetMatrixElement(m, GetSwapDiag(ptr, 2), cPtr, GetMatrixElement(m, GetSwapDiag(ptr, 1), cPtr));
               m = SetMatrixElement(m, GetSwapDiag(ptr, 1), cPtr, dSwap);
           }
       }
   }
   //
   return m;

}

list TransposeMatrix(list m) {

   list m2 = ZeroMatrix();
   //
   m2 = SetMatrixElement(m2, 1, 2, GetMatrixElement(m, 2, 1));
   m2 = SetMatrixElement(m2, 1, 3, GetMatrixElement(m, 3, 1));
   m2 = SetMatrixElement(m2, 2, 1, GetMatrixElement(m, 1, 2));
   m2 = SetMatrixElement(m2, 2, 3, GetMatrixElement(m, 3, 2));
   m2 = SetMatrixElement(m2, 3, 1, GetMatrixElement(m, 1, 3));
   m2 = SetMatrixElement(m2, 3, 2, GetMatrixElement(m, 2, 3));
   //
   // Don't need to transpose the diagonal elements.
   m2 = SetMatrixElement(m2, 1, 1, GetMatrixElement(m, 1, 1));
   m2 = SetMatrixElement(m2, 2, 2, GetMatrixElement(m, 2, 2));
   m2 = SetMatrixElement(m2, 3, 3, GetMatrixElement(m, 3, 3));
   //
   return m2;

}

integer MatrixIsZero(list m) {

   return (GetMatrixElement(m, 1, 1) == 0 && GetMatrixElement(m, 2, 1) == 0 && GetMatrixElement(m, 3, 1) == 0 && 
           GetMatrixElement(m, 1, 2) == 0 && GetMatrixElement(m, 2, 2) == 0 && GetMatrixElement(m, 3, 2) == 0 && 
           GetMatrixElement(m, 1, 3) == 0 && GetMatrixElement(m, 2, 3) == 0 && GetMatrixElement(m, 3, 3) == 0);

}

integer MatrixIsOrthogonal(list m) {

   float epsilon = .00002; // Our allowed tolerance.
   //
   vector v1 = llList2Vector(m, 0);
   vector v2 = llList2Vector(m, 1);
   vector v3 = llList2Vector(m, 2);
   //
   return llFabs(llFabs(llRot2Angle(llRotBetween(v1, v2))) - 90) < epsilon &&
          llFabs(llFabs(llRot2Angle(llRotBetween(v1, v3))) - 90) < epsilon &&
          llFabs(llFabs(llRot2Angle(llRotBetween(v2, v3))) - 90) < epsilon;

}

integer MatrixIsNormal(list m) {

   float epsilon = .00002; // Our allowed tolerance.
   //
   vector v1 = llList2Vector(m, 0);
   vector v2 = llList2Vector(m, 1);
   vector v3 = llList2Vector(m, 2);
   //
   return llFabs(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z - 1) < epsilon &&
          llFabs(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z - 1) < epsilon &&
          llFabs(v3.x * v3.x + v3.y * v3.y + v3.z * v3.z - 1) < epsilon;

}

string VectorString(vector v) // Primarily used for debugging purposes. {

   return "[ " + Float2StringFormat(v.x, 5, TRUE) + ", " + Float2StringFormat(v.y, 5, TRUE) + ", " + Float2StringFormat(v.z, 5, TRUE) + " ]";

}

string MatrixString(list m) // Primarily used for debugging purposes. {

   return "\n[ " + Float2StringFormat(GetMatrixElement(m, 1, 1), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 1, 2), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 1, 3), 5, TRUE) + " ;" + "\n" + 
            "  " + Float2StringFormat(GetMatrixElement(m, 2, 1), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 2, 2), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 2, 3), 5, TRUE) + " ;" + "\n" + 
            "  " + Float2StringFormat(GetMatrixElement(m, 3, 1), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 3, 2), 5, TRUE) + ", " + Float2StringFormat(GetMatrixElement(m, 3, 3), 5, TRUE) + " ]";

}

string Float2StringFormat(float num, integer places, integer rnd) // Allows string output of a float in a tidy text format. // rnd (rounding) should be set to TRUE for rounding, FALSE for no rounding {

   if (rnd) 
   {
       float f = llPow(10.0, places);
       integer i = llRound(llFabs(num) * f);
       string s = "00000" + (string)i; // Number of 0s is (value of max places - 1).
       if (num < 0.0) return "-" + (string)( (integer)(i / f) ) + "." + llGetSubString(s, -places, -1);
       return (string)((integer)(i / f)) + "." + llGetSubString(s, -places, -1);
   }
   if (!places) return (string)((integer)num );
   if ((places = (places - 7 - (places < 1))) & 0x80000000) return llGetSubString((string)num, 0, places);
   return (string)num;

}

// These globals are just used in SetSwapDiag & GetSwapDiag, which are used only in InvertMatrix. // They emulate a 6x3 array of integers. integer iSwapDiag11; integer iSwapDiag21; integer iSwapDiag31; integer iSwapDiag41; integer iSwapDiag51; integer iSwapDiag61; integer iSwapDiag12; integer iSwapDiag22; integer iSwapDiag32; integer iSwapDiag42; integer iSwapDiag52; integer iSwapDiag62; integer iSwapDiag13; integer iSwapDiag23; integer iSwapDiag33; integer iSwapDiag43; integer iSwapDiag53; integer iSwapDiag63; //

SetSwapDiag(integer i, integer j, integer value) // Just used for the InvertMatrix function. {

        if (i == 1) 
   { 
            if (j == 1) iSwapDiag11 = value;
       else if (j == 2) iSwapDiag12 = value;
       else if (j == 3) iSwapDiag13 = value;
   }
   else if (i == 2)
   {
            if (j == 1) iSwapDiag21 = value;
       else if (j == 2) iSwapDiag22 = value;
       else if (j == 3) iSwapDiag23 = value;
   }
   else if (i == 3)
   {
            if (j == 1) iSwapDiag31 = value;
       else if (j == 2) iSwapDiag32 = value;
       else if (j == 3) iSwapDiag33 = value;
   }
   else if (i == 4)
   {
            if (j == 1) iSwapDiag41 = value;
       else if (j == 2) iSwapDiag42 = value;
       else if (j == 3) iSwapDiag43 = value;
   }
   else if (i == 5)
   {
            if (j == 1) iSwapDiag51 = value;
       else if (j == 2) iSwapDiag52 = value;
       else if (j == 3) iSwapDiag53 = value;
   }
   else if (i == 6)
   {
            if (j == 1) iSwapDiag61 = value;
       else if (j == 2) iSwapDiag62 = value;
       else if (j == 3) iSwapDiag63 = value;
   }

}

integer GetSwapDiag(integer i, integer j) // Just used for the InvertMatrix function. {

   integer i1;
   integer i2;
   integer i3;
   //
        if (i == 1) { i1 = iSwapDiag11; i2 = iSwapDiag12; i3 = iSwapDiag13; }
   else if (i == 2) { i1 = iSwapDiag21; i2 = iSwapDiag22; i3 = iSwapDiag23; }
   else if (i == 3) { i1 = iSwapDiag31; i2 = iSwapDiag32; i3 = iSwapDiag33; }
   else if (i == 4) { i1 = iSwapDiag41; i2 = iSwapDiag42; i3 = iSwapDiag43; }
   else if (i == 5) { i1 = iSwapDiag51; i2 = iSwapDiag52; i3 = iSwapDiag53; }
   else if (i == 6) { i1 = iSwapDiag61; i2 = iSwapDiag62; i3 = iSwapDiag63; }
   //
        if (j == 1) return i1;
   else if (j == 2) return i2;
   else if (j == 3) return i3;
   return 0; // Needed for compiler.

}

default {

   on_rez(integer iStartParam)
   {
       llResetScript();
   }
   state_entry()
   {
   
       list m1;
       list m2;
       list m3;
       list m4;
       //
       m1 = MakeMatrix(1,2,3,4,5,6,7,8,9);
       m2 = MakeMatrix(2.2, 3.3, 4.4, 
                       5.5, 6.6, 5.5, 
                       4.4, 3.2, 2.1);
       m3 = MultMatrices(m1, m2);
       llSay(0, MatrixString(m3));
       
       m4 = DivideMatrices(m3, m2);
       llSay(0, MatrixString(m4)); // m4 should take us back to m1.
       
       // With the above, the MultMatrices and DivideMatrices functions are tested, 
       // along with InvertMatrix via divide.  This is the core of these procedures.
       
       
   
   
   }
   touch_start(integer iNumDetected)
   {
   }
   timer()
   {
   }

} </source>