Difference between revisions of "Category:LSL Vehicle"

From Second Life Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
! Description
! Description
|-
|-
| rowspan="1" |[[llSetVehicleType]]
| rowspan="6" |[[llSetVehicleType]]
{{LSL Constants/Vehicle Types|no_wrapper=true}}
{{LSL Constants/Vehicle Types|no_wrapper=true}}
|-
|-

Revision as of 13:09, 24 February 2007

Function Constant Description
llSetVehicleType VEHICLE_TYPE_NONE 0 Turns off vehicle support
VEHICLE_TYPE_SLED 1 Simple vehicle that bumps along the ground, and likes to move along its local x-axis
VEHICLE_TYPE_CAR 2 Vehicle that bounces along the ground but needs the motors to be driven from external controls or timer events
VEHICLE_TYPE_BOAT 3 Hovers over water with lots of friction and some angular deflection
VEHICLE_TYPE_AIRPLANE 4 Uses linear deflection for lift, no hover, and banking to turn
VEHICLE_TYPE_BALLOON 5 Hover, and friction, but no deflection
llSetVehicleRotationParam



VEHICLE_REFERENCE_FRAME 44 rotation of vehicle axes relative to local frame
llSetVehicleVectorParam


VEHICLE_ANGULAR_FRICTION_TIMESCALE 17 vector of timescales for exponential decay of angular velocity about the three vehicle axes
VEHICLE_ANGULAR_MOTOR_DIRECTION 19 angular velocity that the vehicle will try to achieve
VEHICLE_LINEAR_FRICTION_TIMESCALE 16 vector of timescales for exponential decay of linear velocity along the three vehicle axes
VEHICLE_LINEAR_MOTOR_DIRECTION 18 linear velocity that the vehicle will try to achieve
VEHICLE_LINEAR_MOTOR_OFFSET 20 offset from the center of mass of the vehicle where the linear motor is applied.
llSetVehicleFloatParam


VEHICLE_ANGULAR_DEFLECTION_EFFICIENCY 32 slider between 0 (no deflection) and 1 (maximum strength)
VEHICLE_ANGULAR_DEFLECTION_TIMESCALE 33 exponential timescale for the vehicle to achieve full angular deflection
VEHICLE_ANGULAR_MOTOR_DECAY_TIMESCALE 35 exponential timescale for the angular motor's effectiveness to decay toward zero
VEHICLE_ANGULAR_MOTOR_TIMESCALE 34 exponential timescale for the vehicle to achive its full angular motor velocity
VEHICLE_BANKING_EFFICIENCY 38 slider between -1 (leans out of turns), 0 (no banking), and +1 (leans into turns)
VEHICLE_BANKING_MIX 39 slider between 0 (static banking) and 1 (dynamic banking)
VEHICLE_BANKING_TIMESCALE 40 exponential timescale for the banking behavior to take full effect
VEHICLE_BUOYANCY 27 slider between -1 (double-gravity) and 1 (full anti-gravity)
VEHICLE_HOVER_HEIGHT 24 height the vehicle will try to hover.
VEHICLE_HOVER_EFFICIENCY 25 slider between 0 (bouncy) and 1 (critically damped) hover behavior
VEHICLE_HOVER_TIMESCALE 26 period of time for the vehicle to achieve its hover height
VEHICLE_LINEAR_DEFLECTION_EFFICIENCY 28 slider between 0 (no deflection) and 1 (maximum strength)
VEHICLE_LINEAR_DEFLECTION_TIMESCALE 29 exponential timescale for the vehicle to redirect its velocity to be along its x-axis
VEHICLE_LINEAR_MOTOR_DECAY_TIMESCALE 31 exponential timescale for the linear motor's effectiveness to decay toward zero
VEHICLE_LINEAR_MOTOR_TIMESCALE 30 exponential timescale for the vehicleto achive its full linear motor velocity
VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY 36 slider between 0 (bouncy) and 1 (critically damped) attraction of vehicle z-axis to world z-axis (vertical)
VEHICLE_VERTICAL_ATTRACTION_TIMESCALE 37 exponential timescale for the vehicle to align its z-axis to the world z-axis (vertical)