Difference between revisions of "Mandelbrot Explorer"
Jump to navigation
Jump to search
m |
m (<lsl> tag to <source>) |
||
Line 1: | Line 1: | ||
{{LSL Header}} | {{LSL Header}} | ||
< | <source lang="lsl2"> | ||
// Mandelbrot Explorer by Babbage Linden | // Mandelbrot Explorer by Babbage Linden | ||
// | // | ||
Line 146: | Line 146: | ||
} | } | ||
} | } | ||
</ | </source> | ||
{{LSLC|Library}} | {{LSLC|Library}} |
Latest revision as of 22:52, 24 January 2015
LSL Portal | Functions | Events | Types | Operators | Constants | Flow Control | Script Library | Categorized Library | Tutorials |
// Mandelbrot Explorer by Babbage Linden
//
// Interactive Fractal Explorer Demo
//
// Add this script to a screen made from 245 linked prisms each manipulated to show 5 faces in one direction
//(The script here will create the correct shape object http://wiki.secondlife.com/wiki/XyText_1.5)
// to form a 35x35 pixel display. When rezzed or reset the object will calculate and display a mandelbrot set.
// Clicking on the display will centre the view on the clicked prim and zoom in, allowing the fractal to be
// explored. To return to the initial image either reset the script, or take and rez the object.
//
// Available under the Creative Commons Attribution-ShareAlike 2.5 license
// http://creativecommons.org/licenses/by-sa/2.5/
list faces = [3,7,4,6,1];
integer xsize=35;
integer ysize=35;
integer numfaces=5;
integer fwidth=7;
integer linkNumToX(integer linkNum)
{
integer result = ((linkNum - 1) % fwidth) * numfaces + (numfaces / 2);
return result;
}
integer linkNumToY(integer linkNum)
{
integer result = ((linkNum - 1) / fwidth);
return result;
}
setpixel(integer x, integer y, vector colour)
{
integer face = (y*xsize) + x;
integer linknum = face/numfaces;
integer primface = face - (linknum*5);
llSetLinkColor(linknum + 1, colour, llList2Integer(faces,primface));
}
mandlebrot(float startx, float starty, float zoom, integer width)
{
integer height = width;
integer i;
integer m = 60; // Max iterations.
integer isOverLimit = FALSE;
float Zr = 0.0;
float Zi = 0.0;
float Cr = 0.0;
float Ci = 0.0;
float Tr;
float Ti;
float limit2 = 4.0;
integer y;
for(y = 0; y < height; y++)
{
integer x;
for(x = 0; x < width; x++)
{
Zr = 0.0; Zi = 0.0;
Cr = (2.0 * (x + (startx / zoom)) / width - 1.5) * zoom;
Ci = (2.0 * (y + (starty / zoom)) / height - 1.0) * zoom;
// Evaluate sequence until either max iterations has been
// reached or threshold is breached.
i = 0;
do {
Tr = Zr*Zr - Zi*Zi + Cr;
Ti = 2.0*Zr*Zi + Ci;
Zr = Tr; Zi = Ti;
isOverLimit = Zr*Zr + Zi*Zi > limit2;
} while (!isOverLimit && (++i < m));
// Generate colour for each possible iteration.
// First fill r, then overflow in to g, then b.
vector colour = <0,0,0>;
if(i < m)
{
float step = m / 3.0;
if(i > 0)
{
colour.x = i / step;
i -= (integer)step;
}
if(i > 0)
{
colour.y = i / step;
i -= (integer)step;
}
if(i > 0)
{
colour.z = i / step;
i -= (integer)step;
}
}
setpixel(x, y, colour);
}
}
}
float gZoom;
float gMinX;
float gMinY;
init()
{
// Draw initial fractal image.
gZoom = 1.0;
gMinX = 0;
gMinY = 0;
mandlebrot(gMinX, gMinY, gZoom, 35);
}
default
{
on_rez(integer param)
{
init();
}
state_entry()
{
init();
}
touch_start(integer num)
{
// Convert link number in to screen space.
float dx = linkNumToX(llDetectedLinkNumber(0));
float dy = linkNumToY(llDetectedLinkNumber(0));
// Make dx and dy relative to centre.
dx -= (xsize / 2);
dy -= (ysize / 2);
// Adjust gMinX and gMinY by x and y.
gMinX += dx * gZoom;
gMinY += dy * gZoom;
// Calculate Mandelbrot and increase zoom.
mandlebrot(gMinX, gMinY, gZoom, 35);
gZoom *= 0.9;
}
}