Difference between revisions of "Mandelbrot Explorer"
(New page: // Mandelbrot Explorer by Babbage Linden // // Interactive Fractal Explorer Demo // // Add this script to a screen made from 245 linked prisms each manipulated to show 5 faces in one direc...) |
|||
Line 1: | Line 1: | ||
{{LSL Header}} | |||
<lsl> | |||
// Mandelbrot Explorer by Babbage Linden | // Mandelbrot Explorer by Babbage Linden | ||
// | // | ||
Line 136: | Line 138: | ||
} | } | ||
} | } | ||
</lsl> |
Revision as of 03:28, 19 June 2008
LSL Portal | Functions | Events | Types | Operators | Constants | Flow Control | Script Library | Categorized Library | Tutorials |
<lsl> // Mandelbrot Explorer by Babbage Linden // // Interactive Fractal Explorer Demo // // Add this script to a screen made from 245 linked prisms each manipulated to show 5 faces in one direction // to form a 35x35 pixel display. When rezzed or reset the object will calculate and display a mandelbrot set. // Clicking on the display will centre the view on the clicked prim and zoom in, allowing the fractal to be // explored. To return to the initial image either reset the script, or take and rez the object. // // Available under the Creative Commons Attribution-ShareAlike 2.5 license // http://creativecommons.org/licenses/by-sa/2.5/
list faces = [3,7,4,6,1];
integer xsize=35; integer ysize=35; integer numfaces=5; integer fwidth=7;
integer linkNumToX(integer linkNum) {
integer result = ((linkNum - 1) % fwidth) * numfaces + (numfaces / 2); return result;
}
integer linkNumToY(integer linkNum) {
integer result = ((linkNum - 1) / fwidth); return result;
}
setpixel(integer x, integer y, vector colour) {
integer face = (y*xsize) + x; integer linknum = face/numfaces; integer primface = face - (linknum*5); llSetLinkColor(linknum + 1, colour, llList2Integer(faces,primface));
}
mandlebrot(float startx, float starty, float zoom, integer width) {
integer height = width; integer i; integer m = 50; // Max iterations. integer isOverLimit = FALSE; float Zr = 0.0; float Zi = 0.0; float Cr = 0.0; float Ci = 0.0; float Tr; float Ti; float limit2 = 4.0; integer y; for(y = 0; y < height; y++) { integer x; for(x = 0; x < width; x++) { Zr = 0.0; Zi = 0.0; Cr = (2.0 * (x + (startx / zoom)) / width - 1.5) * zoom; Ci = (2.0 * (y + (starty / zoom)) / height - 1.0) * zoom; i = 0; do { Tr = Zr*Zr - Zi*Zi + Cr; Ti = 2.0*Zr*Zi + Ci; Zr = Tr; Zi = Ti; isOverLimit = Zr*Zr + Zi*Zi > limit2; } while (!isOverLimit && (++i < m)); // Generate colour for each possible iteration. // First fill r, then overflow in to g, then b. vector colour = <0,0,0>; if(i < m) { integer step = m / 3; float fstep = step; if(i > 0) { colour.x = i / fstep; i -= step; } if(i > 0) { colour.y = i / fstep; i -= step; } if(i > 0) { colour.z = i / fstep; i -= step; } } setpixel(x, y, colour); } }
}
float gZoom = 1.0; float gMinX = 0; float gMinY = 0;
default {
on_rez(integer param) { // Draw initial fractal image. mandlebrot(gMinX, gMinY, gZoom, 35); } state_entry() { // Draw initial fractal image. mandlebrot(gMinX, gMinY, gZoom, 35); } touch_start(integer num) { // Convert link number in to screen space. float dx = linkNumToX(llDetectedLinkNumber(0)); float dy = linkNumToY(llDetectedLinkNumber(0)); // Make dx and dy relative to centre. dx -= (xsize / 2); dy -= (ysize / 2); // Adjust gMinX and gMinY by x and y. gMinX += dx * gZoom; gMinY += dy * gZoom; // Calculate Mandelbrot and increase zoom. mandlebrot(gMinX, gMinY, gZoom, 35); gZoom *= 0.9; }
} </lsl>