Difference between revisions of "User:Nexii Malthus/GeometricLib"
m |
|||
Line 1: | Line 1: | ||
{{RightToc|clear:right;}} | |||
Sandbox for Geometric Library ideas and possible improvements. | Sandbox for Geometric Library ideas and possible improvements. | ||
Ideas.. | |||
What does a function do? Whats the point of it? | |||
What can it do for me? What can I use for? | |||
*Restrictions? | |||
*Abilities? | |||
*Examples? | |||
*Explanations? | |||
== Geometric Library Code == | |||
This is the script in its entirety. | |||
<lsl>//===================================================// | |||
// Geometric Library 1.0 // | |||
// "May 4 2008", "2:24:30" // | |||
// Copyright (C) 2008, Nexii Malthus (cc-by) // | |||
// http://creativecommons.org/licenses/by/3.0/ // | |||
//===================================================// | |||
vector CP(vector A,vector B){ | |||
return A % B;} | |||
vector Project3D(vector A,vector B){ | |||
vector proj; | |||
proj.x = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.x; | |||
proj.y = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.y; | |||
proj.z = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.z; | |||
return proj;} | |||
// POINT | |||
float gXXdZ(vector A,vector B){ | |||
// Distance P2P. | |||
return llVecDist(A,B);} | |||
vector gXXdV(vector A,vector B){ | |||
// Vector to move from P2P. | |||
return A-B;} | |||
// LINE | |||
vector gLXdV(vector O,vector D,vector A){ | |||
// Calculates the vector from a point to the closest point on a line | |||
return (O-A)-((O-A)*D)*D;} | |||
float gLXdZ(vector O,vector D,vector A){ | |||
// Calculates distance of this vector, but faster on it's own | |||
return llSqrt(CP((A-O),D)*CP((A-O),D));} | |||
vector gLLdV(vector O1,vector D1,vector O2,vector D2){ | |||
// Shortest vector of two lines | |||
return Project3D( (O2-O1), CP(D1,D2) );} | |||
float gLLdZ(vector O1,vector D1,vector O2,vector D2){ | |||
// Returns the distance between two lines | |||
vector A = CP(D1,D2);float B = llVecMag(A);A = <A.x/B,A.y/B,A.z/B>; | |||
return (O2-O1) * A;} | |||
vector gLLnX(vector O1,vector D1,vector O2,vector D2){ | |||
// Closest point of two lines | |||
vector nO1 = < O1*D1, O1*D2, 0>; | |||
vector nO2 = < O2*D1, O2*D2, 0>; | |||
vector nD1 = < D1*D1, O1*D2, 0>; | |||
vector nD2 = < O2*D1, O2*D2, 0>; | |||
float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); | |||
t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; | |||
return O1 + D1*t;} | |||
vector X1;vector X2;vector V1;float Z1; | |||
gLLnnXX(vector O1,vector D1,vector O2,vector D2){ | |||
// Two closest points of two lines | |||
vector nO1 = < O1*D1, O1*D2, 0>; | |||
vector nO2 = < O2*D1, O2*D2, 0>; | |||
vector nD1 = < D1*D1, O1*D2, 0>; | |||
vector nD2 = < O2*D1, O2*D2, 0>; | |||
float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); | |||
t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; | |||
X1 = O1 + D1*t; | |||
X2 = X1 + CP(nD1,nD2);} | |||
gLLnnXXVZ(vector O1,vector D1,vector O2,vector D2){ | |||
// Computes two closest points of two lines, vector and distance | |||
vector nO1 = < O1*D1, O1*D2, 0>; | |||
vector nO2 = < O2*D1, O2*D2, 0>; | |||
vector nD1 = < D1*D1, O1*D2, 0>; | |||
vector nD2 = < O2*D1, O2*D2, 0>; | |||
float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); | |||
t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; | |||
X1 = O1 + D1*t; | |||
X2 = X1 + CP(nD1,nD2); | |||
V1 = CP(nD1,nD2); | |||
Z1 = llVecMag(V1);} | |||
// PLANE | |||
float gPXdZ(vector Pn,float Pd,vector A){ | |||
// Finds distance of a point from a plane | |||
return A * Pn + Pd;} | |||
vector gPXdV(vector Pn,float Pd,vector A){ | |||
// Finds vector that points from point to nearest on plane | |||
return -(Pn * A + Pd)*Pn;} | |||
vector gPXnX(vector Pn,float Pd,vector A){ | |||
// Finds closest point on plane given point | |||
return A - (Pn * A + Pd) * Pn;} | |||
float gPRxZ(vector Pn,float Pd,vector O,vector D){ | |||
// Finds distance to intersection of plane along ray | |||
return -( ( (Pn*D)+(Pn*O) ) / (Pn*D) );} | |||
//return -( (Pn*D)/(Pn*O+Pd) );} | |||
vector gPRdV(vector Pn,float Pd,vector O,vector D){ | |||
// Finds distance vector along a ray to a plane | |||
return D * gPRxZ(Pn,Pd,O,D);} | |||
//return -( (Pn*D)/(Pn*O+Pd) )*D;} | |||
vector gPRxX(vector Pn,float Pd,vector O,vector D){ | |||
// Finds intersection point along a ray to a plane | |||
return O + gPRdV(Pn,Pd,O,D);} | |||
vector gPLxX(vector Pn,float Pd,vector O,vector D){ | |||
// Finds interesection point of a line and a plane | |||
return O -( (Pn*D)/(Pn*O+Pd) )*D;} | |||
vector oO;vector oD; | |||
gPPxL(vector Pn,float Pd,vector Qn,float Qd){ | |||
// Finds line of intersection of two planes | |||
oD = CP(Pn,Qn)/llVecMag(CP(Pn,Qn)); | |||
vector Cross = CP(CP(Pn,Qn),Pn); | |||
vector Bleh = (-Pd*Pn); | |||
oO = Bleh - (Qn*Cross)/(Qn*Bleh+Qd)*Cross/llVecMag(Cross);} | |||
float gRXpZ(vector O,vector D,vector A){ | |||
// Finds projected distance of a point along a ray | |||
return (A-O)*D;} | |||
gPRpR(vector Pn,float Pd,vector O,vector D){ | |||
// Projects a ray onto a plane | |||
oO = O - (Pn * O + Pd) * Pn; | |||
vector t = llVecNorm( D - Project3D(D,Pn) );t = <1.0/t.x,1.0/t.y,1.0/t.z>; | |||
oD = CP(Pn,t);} | |||
// SPHERE | |||
vector gSRxX(vector Sp, float Sr, vector Ro, vector Rd){ | |||
float t;Ro = Ro - Sp; | |||
//vector RayOrg = llDetectedPos(x) - llGetPos(); | |||
if(Rd == ZERO_VECTOR) return ZERO_VECTOR; | |||
float a = Rd * Rd; | |||
float b = 2 * Rd * Ro; | |||
float c = (Ro * Ro) - (Sr * Sr); | |||
float disc = b * b - 4 * a * c; | |||
if(disc < 0) return ZERO_VECTOR; | |||
float distSqrt = llSqrt(disc); | |||
float q; | |||
if(b < 0) | |||
q = (-b - distSqrt)/2.0; | |||
else | |||
q = (-b + distSqrt)/2.0; | |||
float t0 = q / a; | |||
float t1 = c / q; | |||
if(t0 > t1){ | |||
float temp = t0; | |||
t0 = t1; | |||
t1 = temp; | |||
} | |||
if(t1 < 0) return ZERO_VECTOR; | |||
if(t0 < 0) | |||
t = t1; | |||
else | |||
t = t0; | |||
return Ro + (t * Rd); | |||
} | |||
integer gSRx(vector Sp, float Sr, vector Ro, vector Rd){ | |||
float t;Ro = Ro - Sp; | |||
//vector RayOrg = llDetectedPos(x) - llGetPos(); | |||
if(Rd == ZERO_VECTOR) return FALSE; | |||
float a = Rd * Rd; | |||
float b = 2 * Rd * Ro; | |||
float c = (Ro * Ro) - (Sr * Sr); | |||
float disc = b * b - 4 * a * c; | |||
if(disc < 0) return FALSE; | |||
return TRUE; | |||
} | |||
// Other | |||
vector pN;float pD; | |||
gTiP(vector p1,vector p2,vector p3){ | |||
// Turns three vector points in space into a plane | |||
pN = llVecNorm( CP((p2-p1),(p3-p1)) ); | |||
pD = -p1*pN;} | |||
integer gTXcC(vector p1,vector p2,vector p3,vector x){ | |||
// Can be used to check weather a point is inside a triangle | |||
gTiP(p1,p2,p3); | |||
vector Vn;vector En; | |||
Vn = p1 - x; | |||
En = CP((p2-p1),pN); | |||
if( ((p1-x)*CP(p2-p1,pN) >= 0)&&((p2-x)*CP(p3-p2,pN) >= 0)&&((p3-x)*CP(p1-p3,pN) >= 0) ) return TRUE; | |||
return FALSE;} | |||
integer gTVXcC(vector p1,vector p2,vector p3,vector v,vector x){ | |||
if( ((p1-x)*CP(p2-p1,v) >= 0)&&((p2-x)*CP(p3-p2,v) >= 0)&&((p3-x)*CP(p1-p3,v) >= 0) ) return TRUE; | |||
return FALSE;} | |||
integer gTRcC(vector p1,vector p2,vector p3,vector O,vector D){ | |||
return gTVXcC(p1,p2,p3,O,D);} | |||
vector gRZiX(vector O,vector D,float z){ | |||
return O+z*D;} | |||
default{state_entry(){}} | |||
</lsl> |
Revision as of 06:53, 19 May 2008
Sandbox for Geometric Library ideas and possible improvements.
Ideas..
What does a function do? Whats the point of it? What can it do for me? What can I use for?
- Restrictions?
- Abilities?
- Examples?
- Explanations?
Geometric Library Code
This is the script in its entirety.
<lsl>//===================================================// // Geometric Library 1.0 // // "May 4 2008", "2:24:30" // // Copyright (C) 2008, Nexii Malthus (cc-by) // // http://creativecommons.org/licenses/by/3.0/ // //===================================================//
vector CP(vector A,vector B){
return A % B;}
vector Project3D(vector A,vector B){
vector proj; proj.x = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.x; proj.y = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.y; proj.z = ( (A*B) / (B.x*B.x + B.y*B.y + B.z*B.z) ) * B.z; return proj;}
// POINT float gXXdZ(vector A,vector B){
// Distance P2P. return llVecDist(A,B);}
vector gXXdV(vector A,vector B){
// Vector to move from P2P. return A-B;}
// LINE vector gLXdV(vector O,vector D,vector A){
// Calculates the vector from a point to the closest point on a line return (O-A)-((O-A)*D)*D;}
float gLXdZ(vector O,vector D,vector A){
// Calculates distance of this vector, but faster on it's own return llSqrt(CP((A-O),D)*CP((A-O),D));}
vector gLLdV(vector O1,vector D1,vector O2,vector D2){
// Shortest vector of two lines return Project3D( (O2-O1), CP(D1,D2) );}
float gLLdZ(vector O1,vector D1,vector O2,vector D2){
// Returns the distance between two lines vector A = CP(D1,D2);float B = llVecMag(A);A = <A.x/B,A.y/B,A.z/B>; return (O2-O1) * A;}
vector gLLnX(vector O1,vector D1,vector O2,vector D2){
// Closest point of two lines vector nO1 = < O1*D1, O1*D2, 0>; vector nO2 = < O2*D1, O2*D2, 0>; vector nD1 = < D1*D1, O1*D2, 0>; vector nD2 = < O2*D1, O2*D2, 0>; float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; return O1 + D1*t;}
vector X1;vector X2;vector V1;float Z1;
gLLnnXX(vector O1,vector D1,vector O2,vector D2){
// Two closest points of two lines vector nO1 = < O1*D1, O1*D2, 0>; vector nO2 = < O2*D1, O2*D2, 0>; vector nD1 = < D1*D1, O1*D2, 0>; vector nD2 = < O2*D1, O2*D2, 0>; float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; X1 = O1 + D1*t; X2 = X1 + CP(nD1,nD2);}
gLLnnXXVZ(vector O1,vector D1,vector O2,vector D2){
// Computes two closest points of two lines, vector and distance vector nO1 = < O1*D1, O1*D2, 0>; vector nO2 = < O2*D1, O2*D2, 0>; vector nD1 = < D1*D1, O1*D2, 0>; vector nD2 = < O2*D1, O2*D2, 0>; float t = ( nD2.x*nD1.y - nD1.x*nD2.y ); t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t; X1 = O1 + D1*t; X2 = X1 + CP(nD1,nD2); V1 = CP(nD1,nD2); Z1 = llVecMag(V1);}
// PLANE float gPXdZ(vector Pn,float Pd,vector A){
// Finds distance of a point from a plane return A * Pn + Pd;}
vector gPXdV(vector Pn,float Pd,vector A){
// Finds vector that points from point to nearest on plane return -(Pn * A + Pd)*Pn;}
vector gPXnX(vector Pn,float Pd,vector A){
// Finds closest point on plane given point return A - (Pn * A + Pd) * Pn;}
float gPRxZ(vector Pn,float Pd,vector O,vector D){
// Finds distance to intersection of plane along ray return -( ( (Pn*D)+(Pn*O) ) / (Pn*D) );} //return -( (Pn*D)/(Pn*O+Pd) );}
vector gPRdV(vector Pn,float Pd,vector O,vector D){
// Finds distance vector along a ray to a plane return D * gPRxZ(Pn,Pd,O,D);} //return -( (Pn*D)/(Pn*O+Pd) )*D;}
vector gPRxX(vector Pn,float Pd,vector O,vector D){
// Finds intersection point along a ray to a plane return O + gPRdV(Pn,Pd,O,D);}
vector gPLxX(vector Pn,float Pd,vector O,vector D){
// Finds interesection point of a line and a plane return O -( (Pn*D)/(Pn*O+Pd) )*D;}
vector oO;vector oD;
gPPxL(vector Pn,float Pd,vector Qn,float Qd){
// Finds line of intersection of two planes oD = CP(Pn,Qn)/llVecMag(CP(Pn,Qn)); vector Cross = CP(CP(Pn,Qn),Pn); vector Bleh = (-Pd*Pn); oO = Bleh - (Qn*Cross)/(Qn*Bleh+Qd)*Cross/llVecMag(Cross);}
float gRXpZ(vector O,vector D,vector A){
// Finds projected distance of a point along a ray return (A-O)*D;}
gPRpR(vector Pn,float Pd,vector O,vector D){
// Projects a ray onto a plane oO = O - (Pn * O + Pd) * Pn; vector t = llVecNorm( D - Project3D(D,Pn) );t = <1.0/t.x,1.0/t.y,1.0/t.z>; oD = CP(Pn,t);}
// SPHERE vector gSRxX(vector Sp, float Sr, vector Ro, vector Rd){
float t;Ro = Ro - Sp; //vector RayOrg = llDetectedPos(x) - llGetPos(); if(Rd == ZERO_VECTOR) return ZERO_VECTOR; float a = Rd * Rd; float b = 2 * Rd * Ro; float c = (Ro * Ro) - (Sr * Sr); float disc = b * b - 4 * a * c; if(disc < 0) return ZERO_VECTOR; float distSqrt = llSqrt(disc); float q; if(b < 0) q = (-b - distSqrt)/2.0; else q = (-b + distSqrt)/2.0; float t0 = q / a; float t1 = c / q; if(t0 > t1){ float temp = t0; t0 = t1; t1 = temp; } if(t1 < 0) return ZERO_VECTOR; if(t0 < 0) t = t1; else t = t0; return Ro + (t * Rd);
}
integer gSRx(vector Sp, float Sr, vector Ro, vector Rd){
float t;Ro = Ro - Sp; //vector RayOrg = llDetectedPos(x) - llGetPos(); if(Rd == ZERO_VECTOR) return FALSE; float a = Rd * Rd; float b = 2 * Rd * Ro; float c = (Ro * Ro) - (Sr * Sr); float disc = b * b - 4 * a * c; if(disc < 0) return FALSE; return TRUE;
}
// Other vector pN;float pD; gTiP(vector p1,vector p2,vector p3){
// Turns three vector points in space into a plane pN = llVecNorm( CP((p2-p1),(p3-p1)) ); pD = -p1*pN;}
integer gTXcC(vector p1,vector p2,vector p3,vector x){
// Can be used to check weather a point is inside a triangle gTiP(p1,p2,p3); vector Vn;vector En; Vn = p1 - x; En = CP((p2-p1),pN); if( ((p1-x)*CP(p2-p1,pN) >= 0)&&((p2-x)*CP(p3-p2,pN) >= 0)&&((p3-x)*CP(p1-p3,pN) >= 0) ) return TRUE; return FALSE;}
integer gTVXcC(vector p1,vector p2,vector p3,vector v,vector x){
if( ((p1-x)*CP(p2-p1,v) >= 0)&&((p2-x)*CP(p3-p2,v) >= 0)&&((p3-x)*CP(p1-p3,v) >= 0) ) return TRUE; return FALSE;}
integer gTRcC(vector p1,vector p2,vector p3,vector O,vector D){
return gTVXcC(p1,p2,p3,O,D);}
vector gRZiX(vector O,vector D,float z){
return O+z*D;}
default{state_entry(){}}
</lsl>