Difference between revisions of "User:Dora Gustafson/llAxes2Rot right and wrong"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 2: | Line 2: | ||
==llAxes2Rot right and wrong== | ==llAxes2Rot right and wrong== | ||
Does it matter if all three vectors are mutually orthogonal unit vectors?<br> | Does it matter if all three vectors are mutually orthogonal unit vectors?<br> | ||
I made a test script to satisfy my own | I made a test script to satisfy my own curiosity: | ||
< | <source lang="lsl2"> | ||
key model; | key model; | ||
integer tog=0; | integer tog=0; | ||
Line 88: | Line 88: | ||
} | } | ||
} | } | ||
</ | </source> | ||
How to use: | How to use: | ||
rezz a prim say x,y,z = 5.0, 0.2, 0.2 meters, put he script in and touch the prim. | rezz a prim say x,y,z = 5.0, 0.2, 0.2 meters, put he script in and touch the prim. |
Latest revision as of 12:56, 22 January 2015
LSL Portal | Functions | Events | Types | Operators | Constants | Flow Control | Script Library | Categorized Library | Tutorials |
llAxes2Rot right and wrong
Does it matter if all three vectors are mutually orthogonal unit vectors?
I made a test script to satisfy my own curiosity:
key model;
integer tog=0;
vector lookat;
rotation Vec2RotBastard( vector V )
{
vector UP = < 0.0, 0.0, 1.0 >;
vector LEFT = llVecNorm(UP%V);
return llAxes2Rot(V, LEFT, UP);
// demand for orthogonal, unit vectors is not fulfilled in general:
// V is a unit vector in special cases only
// UP and V are orthogonal in special cases only
}
rotation Vec2RotNorm( vector V )
{
V = llVecNorm( V );
vector UP = < 0.0, 0.0, 1.0 >;
vector LEFT = llVecNorm(UP%V);
return llAxes2Rot(V, LEFT, UP);
// demand for orthogonal vectors is not fulfilled in general:
// UP and V are orthogonal in special cases only
}
rotation Vec2RotTrue( vector V )
{
V = llVecNorm( V );
vector UP = < 0.0, 0.0, 1.0 >;
vector LEFT = llVecNorm(UP%V);
UP = llVecNorm(V%LEFT); // you want to keep the direction of V
return llAxes2Rot(V, LEFT, UP);
}
rotation Vec2RotHor( vector V )
{
V = llVecNorm( V );
vector UP = < 0.0, 0.0, 1.0 >;
vector LEFT = llVecNorm(UP%V);
V = llVecNorm(LEFT%UP); // you want V confined to the horizontal plane
return llAxes2Rot(V, LEFT, UP);
}
default
{
touch_end(integer n)
{
llSetTimerEvent( 4.0 );
model = llDetectedKey(0);
}
timer()
{
lookat = llList2Vector( llGetObjectDetails( model, [OBJECT_POS]), 0 );
if ( lookat != ZERO_VECTOR )
{
if ( !tog )
{
llSetColor ( <1.0, 0.2, 0.0>, ALL_SIDES );
llSetRot( Vec2RotBastard( lookat - llGetPos()));
}
else if ( tog == 1 )
{
llSetColor ( <1.0, 1.0, 0.0>, ALL_SIDES );
llSetRot( Vec2RotNorm( lookat - llGetPos()));
}
else if ( tog == 2 )
{
llSetColor ( <0.4, 1.0, 0.0>, ALL_SIDES );
llSetRot( Vec2RotTrue( lookat - llGetPos()));
}
else if ( tog == 3 )
{
llSetColor ( <0.0, 0.6, 1.0>, ALL_SIDES );
llSetRot( Vec2RotHor( lookat - llGetPos()));
}
tog = ++tog % 4;
}
else
{
llSetColor ( <0.0, 0.0, 0.0>, ALL_SIDES );
llSetTimerEvent( 0.0 );
}
}
}
How to use:
rezz a prim say x,y,z = 5.0, 0.2, 0.2 meters, put he script in and touch the prim.
It will point you for 4 sec with each routine in turn.
Move around and fly up to see where the prim will point.
Each routine will color the prim its own color:
- Red: "Bastard" routine, Not unit and not orthogonal.
- Yellow: "Norm" routine, unit vectors but not orthogonal.
- Green: "True" routine, true direction, the demands are met.
- Blue: "Hor" routine, direction in the horizontal plane only, the demands are met.