Difference between revisions of "Geometric"

From Second Life Wiki
Jump to navigation Jump to search
m (language tags to <source>)
 
(6 intermediate revisions by one other user not shown)
Line 20: Line 20:
Calculates the vector from a point ''''to'''' the closest point on a line
Calculates the vector from a point ''''to'''' the closest point on a line


<lsl>
<source lang="lsl2">
vector gLXdV(vector O,vector D,vector A){
vector gLXdV(vector O,vector D,vector A){
     return (O-A)-((O-A)*D)*D;}
     return (O-A)-((O-A)*D)*D;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 57: Line 57:
|
|
Calculates distance of line to point, same as measuring magnitude of Line and Point Vector, but faster on it's own
Calculates distance of line to point, same as measuring magnitude of Line and Point Vector, but faster on it's own
<lsl>
<source lang="lsl2">
float gLXdZ(vector O,vector D,vector A){
float gLXdZ(vector O,vector D,vector A){
     vector k = ( A - O ) % D;
     vector k = ( A - O ) % D;
     return llSqrt( k * k );}
     return llSqrt( k * k );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 71: Line 71:
|-
|-
| vector D
| vector D
| Direction of Line
| Direction of Line (unit vector)
|-
|-
| vector A
| vector A
Line 91: Line 91:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
==== Line Nearest Point, Nearest Point ====
==== Line Nearest Point, Nearest Point ====
|-
|-
|
|
Returns nearest point on line to given point
Returns nearest point on line to given point
<lsl>
<source lang="lsl2">
vector gLXnX(vector O,vector D,vector A){
vector gLXnX(vector O,vector D,vector A){
     return gLXdV(O,D,A) + A;}
     return gLXdV(O,D,A) + A;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 136: Line 137:
|
|
Shortest vector of two lines
Shortest vector of two lines
<lsl>
<source lang="lsl2">
vector gLLdV(vector O1,vector D1,vector O2,vector D2){
vector gLLdV(vector O1,vector D1,vector O2,vector D2){
     vector A = O2 - O1; vector B = D1 % D2;
     vector A = O2 - O1; vector B = D1 % D2;
     return B*( (A*B)/(B*B) );}
     return B*( (A*B)/(B*B) );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 177: Line 178:
|
|
Returns the distance between two lines
Returns the distance between two lines
<lsl>
<source lang="lsl2">
float gLLdZ(vector O1,vector D1,vector O2,vector D2){
float gLLdZ(vector O1,vector D1,vector O2,vector D2){
     vector A = D1%D2;float B = llVecMag(A);A = <A.x/B,A.y/B,A.z/B>;
     vector A = D1%D2;float B = llVecMag(A);A = <A.x/B,A.y/B,A.z/B>;
     return (O2-O1) * A;}
     return (O2-O1) * A;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 219: Line 220:


Closest point of two lines
Closest point of two lines
<lsl>
<source lang="lsl2">
vector gLLnX(vector O1,vector D1,vector O2,vector D2){
vector gLLnX(vector O1,vector D1,vector O2,vector D2){
     vector nO1 = < O1*D1, O1*D2, 0>;
     vector nO1 = < O1*D1, O1*D2, 0>;
Line 231: Line 232:
      
      
     return O1 + D1*t;}
     return O1 + D1*t;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 268: Line 269:
|
|
Computes intersection point of two lines, if there is any, else <-1,-1,-1> if none.
Computes intersection point of two lines, if there is any, else <-1,-1,-1> if none.
<lsl>
<source lang="lsl2">
vector gLLxX( vector A, vector B, vector C, vector D ){
vector gLLxX( vector A, vector B, vector C, vector D ){
     vector b = B-A; vector d = D-C;
     vector b = B-A; vector d = D-C;
Line 276: Line 277:
     float t = (c.x*d.y - c.y*d.x) / dotperp;
     float t = (c.x*d.y - c.y*d.x) / dotperp;
     return <A.x + t*b.x, A.y + t*b.y, 0>;}
     return <A.x + t*b.x, A.y + t*b.y, 0>;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 314: Line 315:
|
|
Two closest points of two lines on each line
Two closest points of two lines on each line
<lsl>
<source lang="lsl2">
vector X1;vector X2;
vector X1;vector X2;
gLLnnXX(vector O1,vector D1,vector O2,vector D2){
gLLnnXX(vector O1,vector D1,vector O2,vector D2){
Line 328: Line 329:
     X1 = O1 + D1*t;
     X1 = O1 + D1*t;
     X2 = X1 + nD1%nD2;}
     X2 = X1 + nD1%nD2;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 375: Line 376:
|
|
Input two lines, the function will return a list containing two vectors responding to the line nearest between them. As well as two floats corresponding to the scalar value on the two line of where the line has an end located at.
Input two lines, the function will return a list containing two vectors responding to the line nearest between them. As well as two floats corresponding to the scalar value on the two line of where the line has an end located at.
<lsl>
<source lang="lsl2">
list gLLnL( vector v0, vector v1, vector v2, vector v3 ) {
list gLLnL( vector v0, vector v1, vector v2, vector v3 ) {
     float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
     float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
Line 385: Line 386:
     float num = d0*d1-d2*d3; x = num/den; y = (d0+d1*x)/d3;
     float num = d0*d1-d2*d3; x = num/den; y = (d0+d1*x)/d3;
     vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
     vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 432: Line 433:
|
|
Input two line segments, the function will return a list containing two vectors responding to the line segment nearest between them. As well as two floats corresponding to the scalar value on the two line segments of where the line segment has an end located at.
Input two line segments, the function will return a list containing two vectors responding to the line segment nearest between them. As well as two floats corresponding to the scalar value on the two line segments of where the line segment has an end located at.
<lsl>
<source lang="lsl2">
list gLSLSnLS( vector v0, vector v1, vector v2, vector v3 ) {
list gLSLSnLS( vector v0, vector v1, vector v2, vector v3 ) {
     float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
     float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
Line 444: Line 445:
     if(x<0)x=0; else if(x>1)x=1; if(y<0)y=0; else if(y>1)y=1;
     if(x<0)x=0; else if(x>1)x=1; if(y<0)y=0; else if(y>1)y=1;
     vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
     vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 451: Line 452:
|-
|-
| vector v0
| vector v0
| Start of Line 1
| Start of Line Segment 1
|-
|-
| vector v1
| vector v1
| End of Line 1
| End of Line Segment 1
|-
|-
| vector v2
| vector v2
| Start of Line 2
| Start of Line Segment 2
|-
|-
| vector v3
| vector v3
| End of Line 2
| End of Line Segment 2
|-
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Output
Line 466: Line 467:
|-
|-
| [vx]
| [vx]
| Nearest point on line 1 to line 2
| Nearest point on Line Segment 1 to Line Segment 2
|-
|-
| [vy]
| [vy]
| Nearest point on line 2 to line 1
| Nearest point on Line Segment 2 to Line Segment 1
|-
|-
| [x]
| [x]
| Scalar value representing location of vx on line 1 (range [v0,v1])
| Scalar value representing location of vx on Line Segment 1 (range [v0,v1])
|-
|-
| [y]
| [y]
| Scalar value representing location of vy on line 2 (range [v2,v3])
| Scalar value representing location of vy on Line Segment 2 (range [v2,v3])
|}
|}
<div style="float:left;font-size: 80%;">
<div style="float:left;font-size: 80%;">
Line 486: Line 487:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
==== Line and Line, two nearest points with vector and distance ====
==== Line and Line, two nearest points with vector and distance ====
|-
|-
|
|
Computes two closest points of two lines, vector and distance
Computes two closest points of two lines, vector and distance
<lsl>
<source lang="lsl2">
vector X1;vector X2;vector V1;float Z1;
vector X1;vector X2;vector V1;float Z1;
gLLnnXXVZ(vector O1,vector D1,vector O2,vector D2){
gLLnnXXVZ(vector O1,vector D1,vector O2,vector D2){
Line 506: Line 508:
     V1 = nD1%nD2;
     V1 = nD1%nD2;
     Z1 = llVecMag(V1);}
     Z1 = llVecMag(V1);}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 562: Line 564:
|
|
Works out where point (X) is relative to the line of the segment (L0, L1).
Works out where point (X) is relative to the line of the segment (L0, L1).
<lsl>
<source lang="lsl2">
float gLSPdir( vector L0, vector L1, vector X ){
float gLSPdir( vector L0, vector L1, vector X ){
     return (L1.x - L0.x)*(X.y - L0.y) - (X.x - L0.x)*(L1.y - L0.y);
     return (L1.x - L0.x)*(X.y - L0.y) - (X.x - L0.x)*(L1.y - L0.y);
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 599: Line 601:
|
|
Finds distance of a point from a plane
Finds distance of a point from a plane
<lsl>
<source lang="lsl2">
float gPXdZ(vector Pn,float Pd,vector A){
float gPXdZ(vector Pn,float Pd,vector A){
     return A * Pn + Pd;}
     return A * Pn + Pd;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 609: Line 611:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 636: Line 638:
|
|
Finds vector that points from point to nearest on plane
Finds vector that points from point to nearest on plane
<lsl>
<source lang="lsl2">
vector gPXdV(vector Pn,float Pd,vector A){
vector gPXdV(vector Pn,float Pd,vector A){
     return -(Pn * A + Pd)*Pn;}
     return -(Pn * A + Pd)*Pn;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 646: Line 648:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 673: Line 675:
|
|
Finds closest point on plane given point
Finds closest point on plane given point
<lsl>
<source lang="lsl2">
vector gPXnX(vector Pn,float Pd,vector A){
vector gPXnX(vector Pn,float Pd,vector A){
     return A - (Pn * A + Pd) * Pn;}
     return A - (Pn * A + Pd) * Pn;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 683: Line 685:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 710: Line 712:
|
|
Finds distance to intersection of plane along ray
Finds distance to intersection of plane along ray
<lsl>
<source lang="lsl2">
float gPRxZ(vector Pn,float Pd,vector O,vector D){
float gPRxZ(vector Pn,float Pd,vector O,vector D){
     return -((Pn*O+Pd)/(Pn*D));}
     return -((Pn*O+Pd)/(Pn*D));}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 720: Line 722:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 750: Line 752:
|
|
Finds distance vector along a ray to a plane
Finds distance vector along a ray to a plane
<lsl>
<source lang="lsl2">
vector gPRdV(vector Pn,float Pd,vector O,vector D){
vector gPRdV(vector Pn,float Pd,vector O,vector D){
     return D * gPRxZ(Pn,Pd,O,D);}
     return D * gPRxZ(Pn,Pd,O,D);}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 760: Line 762:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 794: Line 796:
|
|
Finds intersection point along a ray to a plane
Finds intersection point along a ray to a plane
<lsl>
<source lang="lsl2">
vector gPRxX(vector Pn,float Pd,vector O,vector D){
vector gPRxX(vector Pn,float Pd,vector O,vector D){
     return O + gPRdV(Pn,Pd,O,D);}
     return O + gPRdV(Pn,Pd,O,D);}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 804: Line 806:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 838: Line 840:
|
|
Finds interesection point of a line and a plane
Finds interesection point of a line and a plane
<lsl>
<source lang="lsl2">
vector gPLxX(vector Pn,float Pd,vector O,vector D){
vector gPLxX(vector Pn,float Pd,vector O,vector D){
     return O + D*-( (Pn*O-Pd)/(Pn*D) );}
     return O + D*-( (Pn*O-Pd)/(Pn*D) );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 848: Line 850:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 878: Line 880:
|
|
Finds line of intersection of two planes
Finds line of intersection of two planes
<lsl>
<source lang="lsl2">
vector oO;vector oD;
vector oO;vector oD;


Line 886: Line 888:
     vector Bleh = (-Pd*Pn);
     vector Bleh = (-Pd*Pn);
     oO = Bleh - (Qn*Cross)/(Qn*Bleh+Qd)*Cross/llVecMag(Cross);}
     oO = Bleh - (Qn*Cross)/(Qn*Bleh+Qd)*Cross/llVecMag(Cross);}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 893: Line 895:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane 1
| Normal of Plane 1 (unit vector)
|-
|-
| float Pd
| float Pd
Line 899: Line 901:
|-
|-
| vector Qn
| vector Qn
| Origin of Plane 2
| Normal of Plane 2 (unit vector)
|-
|-
| float Qd
| float Qd
Line 932: Line 934:
|
|
Projects a ray onto a plane
Projects a ray onto a plane
<lsl>
<source lang="lsl2">
vector oO;vector oD;
vector oO;vector oD;


Line 939: Line 941:
     vector t = llVecNorm( D - (Pn*((D*Pn)/(Pn*Pn))) );t = <1.0/t.x,1.0/t.y,1.0/t.z>;
     vector t = llVecNorm( D - (Pn*((D*Pn)/(Pn*Pn))) );t = <1.0/t.x,1.0/t.y,1.0/t.z>;
     oD = Pn%t;}
     oD = Pn%t;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 946: Line 948:
|-
|-
| vector Pn
| vector Pn
| Normal of Plane
| Normal of Plane (unit vector)
|-
|-
| float Pd
| float Pd
Line 987: Line 989:
|
|
Finds intersection point of sphere and ray
Finds intersection point of sphere and ray
<lsl>
<source lang="lsl2">
vector gSRxX(vector Sp, float Sr, vector Ro, vector Rd){
vector gSRxX(vector Sp, float Sr, vector Ro, vector Rd){
     float t; Ro -= Sp;
     float t; Ro -= Sp;
Line 1,026: Line 1,028:
     return Sp + Ro + (t * Rd);
     return Sp + Ro + (t * Rd);
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,064: Line 1,066:
|
|
Finds if there is a intersection of sphere and ray
Finds if there is a intersection of sphere and ray
<lsl>
<source lang="lsl2">
integer gSRx(vector Sp, float Sr, vector Ro, vector Rd){
integer gSRx(vector Sp, float Sr, vector Ro, vector Rd){
     float t;Ro = Ro - Sp;
     float t;Ro = Ro - Sp;
Line 1,079: Line 1,081:
     return TRUE;
     return TRUE;
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,118: Line 1,120:
|
|
Finds projected distance of a point along a ray
Finds projected distance of a point along a ray
<lsl>
<source lang="lsl2">
float gRXpZ(vector O,vector D,vector A){
float gRXpZ(vector O,vector D,vector A){
     return (A-O)*D;}
     return (A-O)*D;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,157: Line 1,159:
|
|
Finds intersection of a Ray to a Box and returns intersection distance, otherwise -1 if there is no legal intersection.
Finds intersection of a Ray to a Box and returns intersection distance, otherwise -1 if there is no legal intersection.
<lsl>
<source lang="lsl2">
float gBRxZ(vector Ro,vector Rd, vector Bo, vector Bs, rotation Br){
float gBRxZ(vector Ro,vector Rd, vector Bo, vector Bs, rotation Br){
     vector oB = (Ro-Bo)/Br;    vector dB = Rd/Br;    vector eB = 0.5*Bs;
     vector oB = (Ro-Bo)/Br;    vector dB = Rd/Br;    vector eB = 0.5*Bs;
Line 1,214: Line 1,216:
     return mD;
     return mD;
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,254: Line 1,256:
|
|
Finds intersection of a Ray to a Box and returns intersection point, otherwise ZERO_VECTOR if there is no legal intersection.
Finds intersection of a Ray to a Box and returns intersection point, otherwise ZERO_VECTOR if there is no legal intersection.
<lsl>
<source lang="lsl2">
vector gBRxX( vector Ro, vector Rd, vector Bo, vector Bs, rotation Br){
vector gBRxX( vector Ro, vector Rd, vector Bo, vector Bs, rotation Br){
     float k = gBRxZ(Ro,Rd,Bo,Bs,Br);
     float k = gBRxZ(Ro,Rd,Bo,Bs,Br);
     if( k != -1.0 ) return Ro + Rd * k;
     if( k != -1.0 ) return Ro + Rd * k;
     else return ZERO_VECTOR;}
     else return ZERO_VECTOR;}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,304: Line 1,306:
|
|
Finds if there is an intersection of a Point and a Box and returns boolean
Finds if there is an intersection of a Point and a Box and returns boolean
<lsl>
<source lang="lsl2">
integer gBXx(vector A, vector Bo, vector Bs, rotation Br){
integer gBXx(vector A, vector Bo, vector Bs, rotation Br){
     vector eB = 0.5*Bs; vector rA = (A-Bo)/Br;
     vector eB = 0.5*Bs; vector rA = (A-Bo)/Br;
     return (rA.x<eB.x && rA.x>-eB.x && rA.y<eB.y && rA.y>-eB.y && rA.z<eB.z && rA.z>-eB.z); }
     return (rA.x<eB.x && rA.x>-eB.x && rA.y<eB.y && rA.y>-eB.y && rA.z<eB.z && rA.z>-eB.z); }
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,346: Line 1,348:
|
|
Processes point on nearest edge of box to given point
Processes point on nearest edge of box to given point
<lsl>
<source lang="lsl2">
vector gBXnEX(vector A, vector Bo, vector Bs, rotation Br){
vector gBXnEX(vector A, vector Bo, vector Bs, rotation Br){
     vector eB = 0.5*<llFabs(Bs.x),llFabs(Bs.y),llFabs(Bs.z)>;
     vector eB = 0.5*<llFabs(Bs.x),llFabs(Bs.y),llFabs(Bs.z)>;
Line 1,394: Line 1,396:
      
      
     return Bo + ( X * Br );}
     return Bo + ( X * Br );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,442: Line 1,444:
|
|
Finds if there is an intersection of a Point and a Cylinder and returns boolean
Finds if there is an intersection of a Point and a Cylinder and returns boolean
<lsl>
<source lang="lsl2">
integer gCXx( vector A, vector O, rotation R, vector S ) {
integer gCXx( vector A, vector O, rotation R, vector S ) {
     A = ( A - O ) / R;// Converts to local object frame
     A = ( A - O ) / R;// Converts to local object frame
Line 1,448: Line 1,450:
         && llFabs(A.z/S.z*2) <= 1.;// Test top/bottom
         && llFabs(A.z/S.z*2) <= 1.;// Test top/bottom
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,489: Line 1,491:
|
|
Figures out if point is inside of polygon or otherwise.
Figures out if point is inside of polygon or otherwise.
<lsl>
<source lang="lsl2">
integer gCPXx( list CP, vector X )
integer gCPXx( list CP, vector X )
{//Copyright (c) 1970-2003, Wm. Randolph Franklin; 2008, Strife Onizuka
{//Copyright (c) 1970-2003, Wm. Randolph Franklin; 2008, Strife Onizuka
Line 1,508: Line 1,510:
     return c;
     return c;
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,539: Line 1,541:
|
|
Figures out if line segment intersects with polygon.
Figures out if line segment intersects with polygon.
<lsl>
<source lang="lsl2">
integer gVPLSx( vector P0, vector P1, list VP ){
integer gVPLSx( vector P0, vector P1, list VP ){
     //Copyright 2001, softSurfer (www.softsurfer.com); 2008, Nexii Malthus
     //Copyright 2001, softSurfer (www.softsurfer.com); 2008, Nexii Malthus
Line 1,565: Line 1,567:
     return TRUE;
     return TRUE;
}
}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,585: Line 1,587:
!style="background-color: #eed0d0" colspan="2"| Requirement
!style="background-color: #eed0d0" colspan="2"| Requirement
|-
|-
|style="background-color: #eed0d0" | <lsl>float Perp( vector U, vector V ){ return U.x*V.y - U.y*V.x; }</lsl>
|style="background-color: #eed0d0" | <source lang="lsl2">float Perp( vector U, vector V ){ return U.x*V.y - U.y*V.x; }</source>
| Perpendicular dot product
| Perpendicular dot product
|-
|-
Line 1,606: Line 1,608:
|
|
Projects a vector A by vector B.
Projects a vector A by vector B.
<lsl>
<source lang="lsl2">
vector Project3D(vector A,vector B){
vector Project3D(vector A,vector B){
     return B * ( ( A * B ) / ( B * B ) );}
     return B * ( ( A * B ) / ( B * B ) );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,640: Line 1,642:
|
|
Reflects Ray R with surface normal N
Reflects Ray R with surface normal N
<lsl>
<source lang="lsl2">
vector Reflect(vector R,vector N){
vector Reflect(vector R,vector N){
     return R - 2 * N * ( R * N );}
     return R - 2 * N * ( R * N );}
</lsl>
</source>


{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
Line 1,771: Line 1,773:


==== #1 ====
==== #1 ====
<lsl>
<source lang="lsl2">
//Copyright (c) 1970-2003, Wm. Randolph Franklin
//Copyright (c) 1970-2003, Wm. Randolph Franklin
//Copyright (c) 2008, Strife Onizuka (porting to LSL)
//Copyright (c) 2008, Strife Onizuka (porting to LSL)
Line 1,798: Line 1,800:
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//SOFTWARE.  
//SOFTWARE.  
</lsl>
</source>


==== #2 ====
==== #2 ====
<lsl>
<source lang="lsl2">
// Copyright 2001, softSurfer (www.softsurfer.com); 2008, LSL-port by Nexii Malthus
// Copyright 2001, softSurfer (www.softsurfer.com); 2008, LSL-port by Nexii Malthus
// This code may be freely used and modified for any purpose
// This code may be freely used and modified for any purpose
Line 1,808: Line 1,810:
// liable for any real or imagined damage resulting from its use.
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// Users of this code must verify correctness for their application.
</lsl>
</source>

Latest revision as of 20:00, 24 January 2015

Please vote for: https://jira.secondlife.com/browse/WEB-235 So that I can expand each function into deeper detail without the page starting to fail in readability. --Nexii Malthus 23:05, 24 October 2008 (UTC)

:Break it up so each major section has its own page... thats why hypertext was invented. -Overbrain Unplugged 13:36, 10 October 2010 (UTC)

Geometric Library

Line and Point, Vector

Calculates the vector from a point 'to' the closest point on a line

vector gLXdV(vector O,vector D,vector A){
    return (O-A)-((O-A)*D)*D;}
Input Description
vector O Origin of Line
vector D Direction of Line
vector A Origin of Point
Output Description
return vector gLXdV Returns origin of closest point on Line to Point
3D
By Nexii Malthus

Line and Point, Distance

Calculates distance of line to point, same as measuring magnitude of Line and Point Vector, but faster on it's own

float gLXdZ(vector O,vector D,vector A){
    vector k = ( A - O ) % D;
    return llSqrt( k * k );}
Input Description
vector O Origin of Line
vector D Direction of Line (unit vector)
vector A Origin of Point
Output Description
return float gLXdZ Returns numerical distance from Line to Point
3D
By Nexii Malthus

Line Nearest Point, Nearest Point

Returns nearest point on line to given point

vector gLXnX(vector O,vector D,vector A){
    return gLXdV(O,D,A) + A;}
Input Description
vector O Origin of Line
vector D Direction of Line
vector A Origin of Point
Output Description
return vector gLXnX Returns nearest point on line given point
Requirement
function vector gLXdV(vector O,vector D,vector A)
3D
By Nexii Malthus

Line and Line, Vector

Shortest vector of two lines

vector gLLdV(vector O1,vector D1,vector O2,vector D2){
    vector A = O2 - O1; vector B = D1 % D2;
    return B*( (A*B)/(B*B) );}
Input Description
vector O1 Origin of Line 1
vector D1 Direction of Line 1
vector O2 Origin of Line 2
vector D2 Direction of Line 2
Output Description
return vector gLLdV Returns shortest vector between the two lines
3D
By Nexii Malthus

Line and Line, Distance

Returns the distance between two lines

float gLLdZ(vector O1,vector D1,vector O2,vector D2){
    vector A = D1%D2;float B = llVecMag(A);A = <A.x/B,A.y/B,A.z/B>;
    return (O2-O1) * A;}
Input Description
vector O1 Origin of Line 1
vector D1 Direction of Line 1
vector O2 Origin of Line 2
vector D2 Direction of Line 2
Output Description
return float gLLdZ Returns numerical distance between the two lines
3D
By Nexii Malthus

Line and Line, Nearest point

Closest point of two lines

vector gLLnX(vector O1,vector D1,vector O2,vector D2){
    vector nO1 = < O1*D1, O1*D2, 0>;
    vector nO2 = < O2*D1, O2*D2, 0>;
    vector nD1 = < D1*D1, O1*D2, 0>;
    vector nD2 = < O2*D1, O2*D2, 0>;
    
    float t = ( nD2.x*nD1.y - nD1.x*nD2.y );
    
    t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t;
    
    return O1 + D1*t;}
Input Description
vector O1 Origin of Line 1
vector D1 Direction of Line 1
vector O2 Origin of Line 2
vector D2 Direction of Line 2
Output Description
return vector gLLnX Returns closest point between the two lines
2D
By Nexii Malthus

Line and Line, intersection point

Computes intersection point of two lines, if there is any, else <-1,-1,-1> if none.

vector gLLxX( vector A, vector B, vector C, vector D ){
    vector b = B-A; vector d = D-C;
    float dotperp = b.x*d.y - b.y*d.x;
    if (dotperp == 0) return <-1,-1,-1>;
    vector c = C-A;
    float t = (c.x*d.y - c.y*d.x) / dotperp;
    return <A.x + t*b.x, A.y + t*b.y, 0>;}
Input Description
vector A Start of Line 1
vector B End of Line 1
vector C Start of Line 2
vector D End of Line 2
Output Description
return vector gLLxX The intersection point of the two lines, else <-1,-1,-1> if none
2D
By Nexii Malthus

Line and Line, two nearest points of lines

Two closest points of two lines on each line

vector X1;vector X2;
gLLnnXX(vector O1,vector D1,vector O2,vector D2){
    vector nO1 = < O1*D1, O1*D2, 0>;
    vector nO2 = < O2*D1, O2*D2, 0>;
    vector nD1 = < D1*D1, O1*D2, 0>;
    vector nD2 = < O2*D1, O2*D2, 0>;
    
    float t = ( nD2.x*nD1.y - nD1.x*nD2.y );
    
    t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t;
    
    X1 = O1 + D1*t;
    X2 = X1 + nD1%nD2;}
Input Description
vector O1 Origin of Line 1
vector D1 Direction of Line 1
vector O2 Origin of Line 2
vector D2 Direction of Line 2
Output Description
vector X1 Closest point on line 1 to line 2
vector X2 Closest point on line 2 to line 1
Requirement
global vector X1
global vector X2
2D
By Nexii Malthus

Line and Line, nearest line

Input two lines, the function will return a list containing two vectors responding to the line nearest between them. As well as two floats corresponding to the scalar value on the two line of where the line has an end located at.

list gLLnL( vector v0, vector v1, vector v2, vector v3 ) {
    float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
    float x; float y; float d0; float d1; float d2; float d3; float d4;
    va = v0-v2; vb = v3-v2; if(llVecMag(vb)<Eps) return [];
    vc = v1-v0; if(llVecMag(vc)<Eps) return [];
    d0 = va*vb; d1 = vb*vc; d2 = va*vc; d3 = vb*vb; d4 = vc*vc;
    float den = d4*d3-d1*d1; if( llFabs(den) < Eps ) return [];
    float num = d0*d1-d2*d3; x = num/den; y = (d0+d1*x)/d3;
    vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
Input Description
vector v0 Point on Line 1
vector v1 Point on Line 1
vector v2 Point on Line 2
vector v3 Point on Line 2
Output Description
[vx] Nearest point on Line 1 to Line 2
[vy] Nearest point on Line 2 to Line 1
[x] Scalar value representing location of vx on line 1 (range [v0,v1])
[y] Scalar value representing location of vy on line 2 (range [v2,v3])
3D
By Nexii Malthus

Line and Line Segments, nearest line segment

Input two line segments, the function will return a list containing two vectors responding to the line segment nearest between them. As well as two floats corresponding to the scalar value on the two line segments of where the line segment has an end located at.

list gLSLSnLS( vector v0, vector v1, vector v2, vector v3 ) {
    float Eps = 0.000001; vector vx; vector vy; vector va; vector vb; vector vc;
    float x; float y; float d0; float d1; float d2; float d3; float d4;
    va = v0-v2; vb = v3-v2; if(llVecMag(vb)<Eps) return [];
    vc = v1-v0; if(llVecMag(vc)<Eps) return [];
    if( llFabs(vc.x + vc.y + vc.z) < Eps ) return [];
    d0 = va*vb; d1 = vb*vc; d2 = va*vc; d3 = vb*vb; d4 = vc*vc;
    float den = d4*d3-d1*d1; if( llFabs(den) < Eps ) return [];
    float num = d0*d1-d2*d3; x = num/den; y = (d0+d1*x)/d3;
    if(x<0)x=0; else if(x>1)x=1; if(y<0)y=0; else if(y>1)y=1;
    vx = v0+vc*x; vy = v2+vb*y; return [vx,vy,x,y]; }
Input Description
vector v0 Start of Line Segment 1
vector v1 End of Line Segment 1
vector v2 Start of Line Segment 2
vector v3 End of Line Segment 2
Output Description
[vx] Nearest point on Line Segment 1 to Line Segment 2
[vy] Nearest point on Line Segment 2 to Line Segment 1
[x] Scalar value representing location of vx on Line Segment 1 (range [v0,v1])
[y] Scalar value representing location of vy on Line Segment 2 (range [v2,v3])
3D
By Nexii Malthus

Line and Line, two nearest points with vector and distance

Computes two closest points of two lines, vector and distance

vector X1;vector X2;vector V1;float Z1;
gLLnnXXVZ(vector O1,vector D1,vector O2,vector D2){
    vector nO1 = < O1*D1, O1*D2, 0>;
    vector nO2 = < O2*D1, O2*D2, 0>;
    vector nD1 = < D1*D1, O1*D2, 0>;
    vector nD2 = < O2*D1, O2*D2, 0>;
    
    float t = ( nD2.x*nD1.y - nD1.x*nD2.y );
    
    t = ( nD2.y*(nO1.x-nO2.x) - nD2.x*(nO1.y-nO2.y) ) / t;
    
    X1 = O1 + D1*t;
    X2 = X1 + CP(nD1,nD2);
    V1 = nD1%nD2;
    Z1 = llVecMag(V1);}
Input Description
vector O1 Origin of Line 1
vector D1 Direction of Line 1
vector O2 Origin of Line 2
vector D2 Direction of Line 2
Output Description
vector X1 Closest point on line 1 to line 2
vector X2 Closest point on line 2 to line 1
vector V1 Direction vector of line 1 to line 2
float Z1 Numerical distance of line 1 to line 2
Requirement
global vector X1
global vector X2
global vector V1
global float Z1
2D
By Nexii Malthus

Line and Point, Direction

Works out where point (X) is relative to the line of the segment (L0, L1).

float gLSPdir( vector L0, vector L1, vector X ){
    return (L1.x - L0.x)*(X.y - L0.y) - (X.x - L0.x)*(L1.y - L0.y);
}
Input Description
vector L0, vector L1 Start and End of line segment
vector X Origin of Point
Output Description
float isLeft( vector L0, vector L1, vector X ) Returns float, >0 is Left, 0 on Line, <0 is Right, according to line angle
2D
Copyright 2001, softSurfer (www.softsurfer.com) (Must accept License #2), LSL-Port By Nexii Malthus

Plane and Point, Distance

Finds distance of a point from a plane

float gPXdZ(vector Pn,float Pd,vector A){
    return A * Pn + Pd;}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector A Origin of Point
Output Description
return float gPXdZ Returns Distance between plane and point
3D
By Nexii Malthus

Plane and Point, Vector

Finds vector that points from point to nearest on plane

vector gPXdV(vector Pn,float Pd,vector A){
    return -(Pn * A + Pd)*Pn;}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector A Origin of Point
Output Description
return vector gPXdV Returns vector from point to closest point on plane
3D
By Nexii Malthus

Plane and Point, Nearest point

Finds closest point on plane given point

vector gPXnX(vector Pn,float Pd,vector A){
    return A - (Pn * A + Pd) * Pn;}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector A Origin of Point
Output Description
return vector gPXnX Returns vector of a point from closest of point to plane
3D
By Nexii Malthus

Plane and Ray, Intersection Distance

Finds distance to intersection of plane along ray

float gPRxZ(vector Pn,float Pd,vector O,vector D){
    return -((Pn*O+Pd)/(Pn*D));}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector O Origin of Ray
vector D Direction of Ray
Output Description
return float gPRxZ Returns float distance of intersection between ray and plane
3D
By Nexii Malthus

Plane and Ray, Vector

Finds distance vector along a ray to a plane

vector gPRdV(vector Pn,float Pd,vector O,vector D){
    return D * gPRxZ(Pn,Pd,O,D);}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector O Origin of Ray
vector D Direction of Ray
Output Description
return vector gPRdV Returns vector along a ray to a plane
Requirement
function float gPRxZ(vector Pn,float Pd,vector O,vector D)
3D
By Nexii Malthus

Plane and Ray, Intersection Point

Finds intersection point along a ray to a plane

vector gPRxX(vector Pn,float Pd,vector O,vector D){
    return O + gPRdV(Pn,Pd,O,D);}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector O Origin of Ray
vector D Direction of Ray
Output Description
return vector gPRxX Returns vector point of intersection between ray and plane
Requirement
function vector gPRdV(vector Pn,float Pd,vector O,vector D)
3D
By Nexii Malthus

Plane and Line, Intersection Point

Finds interesection point of a line and a plane

vector gPLxX(vector Pn,float Pd,vector O,vector D){
    return O + D*-( (Pn*O-Pd)/(Pn*D) );}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector O Origin of Line
vector D Direction of Line
Output Description
return vector gPLxX Returns vector point of intersection between line and plane
3D
By Nexii Malthus

Plane and Plane, Intersection Line

Finds line of intersection of two planes

vector oO;vector oD;

gPPxL(vector Pn,float Pd,vector Qn,float Qd){
    oD = (Pn%Qn)/llVecMag(Pn%Qn);
    vector Cross = (Pn%Qn)%Pn;
    vector Bleh = (-Pd*Pn);
    oO = Bleh - (Qn*Cross)/(Qn*Bleh+Qd)*Cross/llVecMag(Cross);}
Input Description
vector Pn Normal of Plane 1 (unit vector)
float Pd Distance of Plane 1
vector Qn Normal of Plane 2 (unit vector)
float Qd Distance of Plane 2
Output Description
vector oO Intersection Line's origin
vector oD Intersection Line's direction
Requirement
global vector oO
global vector oD
3D
By Nexii Malthus

Plane and Ray, Projection

Projects a ray onto a plane

vector oO;vector oD;

gPRpR(vector Pn,float Pd,vector O,vector D){
    oO = O - (Pn * O + Pd) * Pn;
    vector t = llVecNorm( D - (Pn*((D*Pn)/(Pn*Pn))) );t = <1.0/t.x,1.0/t.y,1.0/t.z>;
    oD = Pn%t;}
Input Description
vector Pn Normal of Plane (unit vector)
float Pd Distance of Plane
vector O Origin of Ray
vector D Direction of Ray
Output Description
vector oO Projected Ray Origin
vector oD Projected Ray Direction
Requirement
global vector oO
global vector oD
3D
By Nexii Malthus

Sphere and Ray, Intersection Point

Finds intersection point of sphere and ray

vector gSRxX(vector Sp, float Sr, vector Ro, vector Rd){
    float t; Ro -= Sp;
    if(Rd == ZERO_VECTOR) return ZERO_VECTOR;
    
    float a = Rd * Rd;
    float b = 2 * Rd * Ro;
    float c = (Ro * Ro)  - (Sr * Sr);
    
    float disc = b * b - 4 * a * c;
    
    if(disc < 0) return ZERO_VECTOR;
    
    float distSqrt = llSqrt(disc);
    float q;
    
    if(b < 0)
        q = (-b - distSqrt)/2.0;
    else 
        q = (-b + distSqrt)/2.0;
    
    float t0 = q / a;
    float t1 = c / q;
    
    if(t0 > t1){
        float temp = t0;
        t0 = t1;
        t1 = temp;
    }
    
    if(t1 < 0) return ZERO_VECTOR;
    
    if(t0 < 0)
        t = t1;
    else
        t = t0;
    
    return Sp + Ro + (t * Rd);
}
Input Description
vector Sp Origin of Sphere
float Sr Radius of Sphere
vector Ro Origin of Ray
vector Rd Direction of Ray
Output Description
vector gSRxX Returns intersection point of sphere and ray otherwise ZERO_VECTOR
3D
By Nexii Malthus

Sphere and Ray, Intersection Boolean

Finds if there is a intersection of sphere and ray

integer gSRx(vector Sp, float Sr, vector Ro, vector Rd){
    float t;Ro = Ro - Sp;
    //vector RayOrg = llDetectedPos(x) - llGetPos();
    if(Rd == ZERO_VECTOR) return FALSE;
    
    float a = Rd * Rd;
    float b = 2 * Rd * Ro;
    float c = (Ro * Ro)  - (Sr * Sr);
    
    float disc = b * b - 4 * a * c;
    
    if(disc < 0) return FALSE;
    return TRUE;
}
Input Description
vector Sp Origin of Sphere
float Sr Radius of Sphere
vector Ro Origin of Ray
vector Rd Direction of Ray
Output Description
integer gSRx Returns a boolean indicating if there is a valid intersection
3D
By Nexii Malthus

Ray and Point, projected distance

Finds projected distance of a point along a ray

float gRXpZ(vector O,vector D,vector A){
    return (A-O)*D;}
Input Description
vector O Origin of Ray
vector D Direction of Ray
vector A Origin of Point
Output Description
float gRXpZ Returns projected distance of a point along a ray
3D
By Nexii Malthus

Box and Ray, Intersection Distance

Finds intersection of a Ray to a Box and returns intersection distance, otherwise -1 if there is no legal intersection.

float gBRxZ(vector Ro,vector Rd, vector Bo, vector Bs, rotation Br){
    vector oB = (Ro-Bo)/Br;    vector dB = Rd/Br;    vector eB = 0.5*Bs;
    float mD = -1.0;    float D;    vector X;
    
    if(llFabs(dB.x) > 0.000001){
        D = (-eB.x - oB.x ) / dB.x;
        if(D >= 0.0){
            X = oB + D * dB;
            if(X.y >= -eB.y && X.y <= eB.y && X.z >= -eB.z && X.z <= eB.z)
                mD = D;
        }
        D = ( eB.x - oB.x ) / dB.x;
        if (D >= 0.0){
            X = oB + D * dB;
            if(X.y >= -eB.y && X.y <= eB.y && X.z >= -eB.z && X.z <= eB.z) 
                if (mD < 0.0 || mD > D)
                    mD = D;
        }
    }
    
    if(llFabs(dB.y) > 0.000001){
        D = (-eB.y - oB.y ) / dB.y;
        if(D >= 0.0){
            X = oB + D * dB;
            if(X.x >= -eB.x && X.x <= eB.x && X.z >= -eB.z && X.z <= eB.z)
                if (mD < 0.0 || mD > D)
                    mD = D;
        }
        D = ( eB.y - oB.y ) / dB.y;
        if (D >= 0.0){
            X = oB + D * dB;
            if(X.x >= -eB.x && X.x <= eB.x && X.z >= -eB.z && X.z <= eB.z)
                if (mD < 0.0 || mD > D)
                    mD = D;
        }
    }
    
    if(llFabs(dB.z) > 0.000001){
        D = (-eB.z - oB.z ) / dB.z;
        if(D >= 0.0){
            X = oB + D * dB;
            if(X.x >= -eB.x && X.x <= eB.x && X.y >= -eB.y && X.y <= eB.y)
                if (mD < 0.0 || mD > D)
                    mD = D;
        }
        D = ( eB.z - oB.z ) / dB.z;
        if (D >= 0.0){
            X = oB + D * dB;
            if(X.x >= -eB.x && X.x <= eB.x && X.y >= -eB.y && X.y <= eB.y)
                if (mD < 0.0 || mD > D)
                    mD = D;
        }
    }
    
    return mD;
}
Input Description
vector Ro Origin of Ray
vector Rd Direction of Ray
vector Bo Origin of Box
vector Bs Size of Box
rotation Br Rotation of Box
Output Description
float gBRxZ Returns distance to intersection of a ray and a box
3D

Box and Ray, Intersection Point

Finds intersection of a Ray to a Box and returns intersection point, otherwise ZERO_VECTOR if there is no legal intersection.

vector gBRxX( vector Ro, vector Rd, vector Bo, vector Bs, rotation Br){
    float k = gBRxZ(Ro,Rd,Bo,Bs,Br);
    if( k != -1.0 ) return Ro + Rd * k;
    else return ZERO_VECTOR;}
Input Description
vector Ro Origin of Ray
vector Rd Direction of Ray
vector Bo Origin of Box
vector Bs Size of Box
rotation Br Rotation of Box
Output Description
vector gBRxX Returns point of intersection of a ray and a box
Requirement
float gBRxZ(vector Ro,vector Rd, vector Bo, vector Bs, rotation Br)
3D

Box and Point, Intersection Boolean

Finds if there is an intersection of a Point and a Box and returns boolean

integer gBXx(vector A, vector Bo, vector Bs, rotation Br){
    vector eB = 0.5*Bs; vector rA = (A-Bo)/Br;
    return (rA.x<eB.x && rA.x>-eB.x && rA.y<eB.y && rA.y>-eB.y && rA.z<eB.z && rA.z>-eB.z); }
Input Description
vector A Origin of Point
vector Bo Origin of Box
vector Bs Size of Box
rotation Br Rotation of Box
Output Description
integer gBXx(vector A, vector Bo, vector Bs, rotation Br) Returns boolean check of intersection of a point and a box if there is one, otherwise FALSE
3D
By Nexii Malthus

Box and Point, Nearest Point on Edge

Processes point on nearest edge of box to given point

vector gBXnEX(vector A, vector Bo, vector Bs, rotation Br){
    vector eB = 0.5*<llFabs(Bs.x),llFabs(Bs.y),llFabs(Bs.z)>;
    vector rA = (A-Bo)/Br;
    
    float mD = 3.402823466E+38;
    vector X;
    list EdgesX = [< 0, eB.y, eB.z>, < 0,-eB.y, eB.z>, < 0,-eB.y,-eB.z>, < 0, eB.y,-eB.z>];
    list EdgesY = [< eB.x, 0, eB.z>, <-eB.x, 0, eB.z>, <-eB.x, 0,-eB.z>, < eB.x, 0,-eB.z>];
    list EdgesZ = [< eB.x, eB.y, 0>, <-eB.x, eB.y, 0>, <-eB.x,-eB.y, 0>, < eB.x,-eB.y, 0>];
    
    integer x = (EdgesX != []);
    while( x-- ){
        float y = gLXdZ( llList2Vector( EdgesX, x ), <1,0,0>, rA );
        
        if( rA.x > eB.x ) y += rA.x - eB.x;
        else if( rA.x < -eB.x ) y -= rA.x - -eB.x;
        
        if( y < mD ){ mD = y; X = gLXnX( llList2Vector( EdgesX, x ), <1,0,0>, rA ); }
    }
    x = (EdgesY != []);
    while( x-- ){
        float y = gLXdZ( llList2Vector( EdgesY, x ), <0,1,0>, rA );
        
        if( rA.y > eB.y ) y += rA.y - eB.y;
        else if( rA.y < -eB.y ) y -= rA.y - -eB.y;
        
        if( y < mD ){ mD = y; X = gLXnX( llList2Vector( EdgesY, x ), <0,1,0>, rA ); }
    }
    x = (EdgesZ != []);
    while( x-- ){
        float y = gLXdZ( llList2Vector( EdgesZ, x ), <0,0,1>, rA );
        
        if( rA.z > eB.z ) y += rA.z - eB.z;
        else if( rA.z < -eB.z ) y -= rA.z - -eB.z;
        
        if( y < mD ){ mD = y; X = gLXnX( llList2Vector( EdgesZ, x ), <0,0,1>, rA ); }
    }
    
    if( mD < 0.000001 ) return <-1,-1,-1>;
    if(      X.x >  eB.x ) X.x =  eB.x;
    else if( X.x < -eB.x ) X.x = -eB.x;
    if(      X.y >  eB.y ) X.y =  eB.y;
    else if( X.y < -eB.y ) X.y = -eB.y;
    if(      X.z >  eB.z ) X.z =  eB.z;
    else if( X.z < -eB.z ) X.z = -eB.z;
    
    return Bo + ( X * Br );}
Input Description
vector A Origin of Point
vector Bo Origin of Box
vector Bs Size of Box
rotation Br Rotation of Box
Output Description
vector gBXnEX(vector A, vector Bo, vector Bs, rotation Br) Returns nearest point on edge of box B closest to point A. Returns <-1,-1,-1> if already on closest point.
Requirement
float gLXdZ(vector O,vector D,vector A)
vector gLXdV(vector O,vector D,vector A)
vector gLXnX(vector O,vector D,vector A)
3D
By Nexii Malthus

Cylinder and Point, Intersection Boolean

Finds if there is an intersection of a Point and a Cylinder and returns boolean

integer gCXx( vector A, vector O, rotation R, vector S ) {
    A = ( A - O ) / R;// Converts to local object frame
    return (llPow(A.x/S.x*2,2) + llPow(A.y/S.y*2,2)) <= 1. // Test radius
        && llFabs(A.z/S.z*2) <= 1.;// Test top/bottom
}
Input Description
vector A Origin of Point
vector Bo Origin of Cylinder
vector Bs Size of Cylinder
rotation Br Rotation of Cylinder
Output Description
integer gCXx( vector A, vector O, rotation R, vector S ) Returns boolean check of intersection of a point and a cylinder if there is one, otherwise FALSE
3D
By Nexii Malthus


Polygon and Point, Intersection Boolean

Figures out if point is inside of polygon or otherwise.

integer gCPXx( list CP, vector X )
{//Copyright (c) 1970-2003, Wm. Randolph Franklin; 2008, Strife Onizuka
    integer i = ~(CP != []);
    integer c = 0;
    if(i < -2){
        vector vi = llList2Vector(CP, -1);
        do {
            vector vj = vi;
            vi = llList2Vector(CP, i);
            if((vi.y > X.y) ^ (vj.y > X.y)){
                if(vj.y != vi.y)
                    c = c ^ (X.x < (((vj.x - vi.x) * (X.y - vi.y) / (vj.y - vi.y)) + vi.x));
                else c = c ^ (0 < ((vj.x-vi.x) * (X.y-vi.y)));
            }
        } while (++i);
    }
    return c;
}
Input Description
list CP Vertices of Concave Polygon
vector X Origin of Point
Output Description
integer gCPXx( list CP, vector X ) Returns TRUE if point (X) intersects concave polygon (CP), otherwise FALSE
2D
Copyright (c) 1970-2003, Wm. Randolph Franklin (Must accept License #1), LSL-Port By Strife Onizuka

Polygon and Line Segment, Intersection Boolean

Figures out if line segment intersects with polygon.

integer gVPLSx( vector P0, vector P1, list VP ){
    //Copyright 2001, softSurfer (www.softsurfer.com); 2008, Nexii Malthus
    if( P0 == P1 ) return gCPXx( VP, P0 );
    float tE = 0; float tL = 1;
    float t; float N; float D;
    vector dS = P1 - P0;
    vector e; integer x; integer y = VP!=[];
    @start;
    for( x = 0; x < y; ++x ){
        e = llList2Vector( VP, x+1 ) - llList2Vector( VP, x );
        N = Perp( e, P0 - llList2Vector( VP, x ) );
        D = -Perp( e, dS );
        if( llFabs(D) < 0.00000001 )
            if( N < 0 ) return FALSE;
            else jump start;
        t = N / D;
        if( D < 0 ){
            if( t > tE ){   tE = t; if( tE > tL ) return FALSE;     }
        } else {
            if( t < tL ){   tL = t; if( tL < tE ) return FALSE;     }
    }   }
    // PointOfEntrance = P0 + tE * dS;
    // PointOfExit = P0 + tL * dS;
    return TRUE;
}
Input Description
list VP Vertices of Convex Polygon
vector P0, vector P1 Start and End of Line Segment
Output Description
integer gVPLSx( vector P0, vector P1, list VP ) Returns TRUE if line segment (P0,P1) intersects convex polygon (VP), otherwise FALSE
Requirement
float Perp( vector U, vector V ){ return U.x*V.y - U.y*V.x; }
Perpendicular dot product
integer gCPXx( list CP, vector X ) Only needed for (P0 == P1) safety catch check, so optional
2D
Copyright 2001, softSurfer (www.softsurfer.com) (Must accept License #2), LSL-Port By Nexii Malthus

3D Projection

Projects a vector A by vector B.

vector Project3D(vector A,vector B){
    return B * ( ( A * B ) / ( B * B ) );}
Input Description
vector A First Vector
vector B Second Vector
Output Description
return Project3D(vector A, vector B) Returns result of projection
3D
By Nexii Malthus

Reflection

Reflects Ray R with surface normal N

vector Reflect(vector R,vector N){
    return R - 2 * N * ( R * N );}
Input Description
vector R Ray Normal
vector N Surface Normal
Output Description
return Reflect(vector R, vector N) Returns result of reflection
3D
By Nexii Malthus

For anyone curious to the shorthand used and who wish to use a lookup table can use this as a reference. Or anyone who wishes to add a new function to the library is welcome to but it would be recommended to keep consistency. I tried to minimize the script function names to be easily readable. All the geometric function names start with a g.

g (Shape1) (Shape2) (Process) (Return (Only needed if other than integer))

Here is the legend:

Shorthand Name Description
Geometric Types, all the shapes in the library
X Point vector defining a point in space
L Line A line has an origin and a direction and is infinitely long
LS Line Segment A line segment is a finite line and therefore consists of a start and end position
R Ray A ray is like a line, except it is more distinct as it defines wether it points forward or back
P Plane A 2D doubly ruled surface of infinite size
S Sphere A sphere is defined by origin and radius (No ellipsoid functions available yet)
B Box A box primitive is six sided and defined by origin, size as well as a rotation.
C Cylinder An elliptic cylinder primitive .
VP Convex Polygon Convex Polygon defined by list of vertices.
CP Concave Polygon Concave Polygon defined by list of vertices. Automatic backward compatibility with Convex Polygons.
The Process, What does it do?
d distance Calculate distance
n nearest Calculate nearest
p project Calculates projection
x Intersection Calculates intersection
dir direction Calculates direction
Return, What kind of data do I get out of it?
Z Float Represents that a float is returned
V Vector Represents that a vector is returned
O Origin Represents the Origin of the ray or line
D Direction Direction from the Origin
E Edge Edge of a shape, such as an edge on a box, suffix may mark special case return type

#1

//Copyright (c) 1970-2003, Wm. Randolph Franklin
//Copyright (c) 2008, Strife Onizuka (porting to LSL)
//
//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files (the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions:
//
// 1. Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice in the documentation and/or other materials provided with the
//    distribution.
// 3. The name of W. Randolph Franklin may not be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission. 
 
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//SOFTWARE.

#2

// Copyright 2001, softSurfer (www.softsurfer.com); 2008, LSL-port by Nexii Malthus
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.