Difference between revisions of "LlEuler2Rot"

From Second Life Wiki
Jump to navigation Jump to search
m
m
 
Line 5: Line 5:
|func_footnote
|func_footnote
|func_desc
|func_desc
|return_text=representation of Euler Angles {{LSLP|v}}.
|return_text=representation of the {{Wikipedia|Euler Angles|w=n}} {{LSLP|v}}.
|spec=The {{LSLGC|Euler}} angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes in Z, Y, X order. So <code>llEuler2Rot(<1.0, 2.0, 3.0> * [[DEG_TO_RAD]])</code> generates a rotation by first rotating 3 degrees around the global Z axis, then rotating the result around the global Y axis, and finally rotating that 1 degree around the global X axis.
|spec=The {{LSLGC|Euler}} angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes in Z, Y, X order. So <code>llEuler2Rot(<1.0, 2.0, 3.0> * [[DEG_TO_RAD]])</code> generates a rotation by first rotating 3 degrees around the global Z axis, then rotating the result around the global Y axis, and finally rotating that 1 degree around the global X axis.
|caveats
|caveats

Latest revision as of 14:46, 8 August 2015

Summary

Function: rotation llEuler2Rot( vector v );
0.0 Forced Delay
10.0 Energy

Returns a rotation representation of the "Wikipedia logo"Euler Angles v.

• vector v Angle

Specification

The Euler angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes in Z, Y, X order. So llEuler2Rot(<1.0, 2.0, 3.0> * DEG_TO_RAD) generates a rotation by first rotating 3 degrees around the global Z axis, then rotating the result around the global Y axis, and finally rotating that 1 degree around the global X axis.

Examples

default
{
    state_entry()
    {
        vector input = <73.0, -63.0, 20.0> * DEG_TO_RAD;
        rotation rot = llEuler2Rot(input);
        llSay(0,"The Euler2Rot of "+(string)input+" is: "+(string)rot );
    }
}

Notes

v/=2;
rotation k = <0.0, 0.0, llSin(v.z), llCos(v.z)> * <0.0, llSin(v.y), 0.0, llCos(v.y)> * <llSin(v.x), 0.0, 0.0, llCos(v.x)>;

See Also

Functions

•  llRot2Euler

Articles

•  "Wikipedia logo"Euler Angles

Deep Notes

Signature

function rotation llEuler2Rot( vector v );