Difference between revisions of "LlRot2Angle"

From Second Life Wiki
Jump to navigation Jump to search
m (Updated Table width so the reference implementation is readable.)
 
(10 intermediate revisions by 4 users not shown)
Line 7: Line 7:
|return_text=that is the rotation angle represented by '''rot'''
|return_text=that is the rotation angle represented by '''rot'''
|spec
|spec
|caveats=This always returns a positive angle < PI radians, that is, it is the unsigned minimum angle. A rotation of 3/2 PI radians (270 degrees) will return an angle of PI / 2 radians, not -PI / 2.
|caveats=This always returns a positive angle <= PI radians, that is, it is the unsigned minimum angle. A rotation of 3/2 PI radians (270 degrees) will return an angle of PI / 2 radians, not -PI / 2.
|constants
|constants
|examples
|examples
Line 17: Line 17:
{{LSL DefineRow||[[llRot2Fwd]]}}
{{LSL DefineRow||[[llRot2Fwd]]}}
{{LSL DefineRow||[[llRot2Left]]}}
{{LSL DefineRow||[[llRot2Left]]}}
{{LSL DefineRow||[[llAngleBetween]]|Similar functionality.}}
|also_tests
|also_tests
|also_events
|also_events
Line 25: Line 26:
|cat3
|cat3
|cat4
|cat4
|deepnotes= ===Reference Implementation===
<table width=800><tr><td>
<source lang="lsl2">float Rot2Angle(rotation a)//simple but turns out to not be very accurate.
{
    return 2.0 * llAcos(llSqrt((a.s * a.s) / (a.x * a.x + a.y * a.y + a.z * a.z + a.s * a.s));
}</source>
<source lang="lsl2">float Rot2Angle(rotation r)//more complex implementation but more accurate, and reasonably fast.
{
    float s2 = r.s * r.s; // square of the s-element
    float v2 = r.x * r.x + r.y * r.y + r.z * r.z; // sum of the squares of the v-elements
    if (s2 < v2) // compare the s-component to the v-component
        return 2.0 * llAcos(llSqrt(s2 / (s2 + v2))); // use arccos if the v-component is dominant
    if (v2) // make sure the v-component is non-zero
        return 2.0 * llAsin(llSqrt(v2 / (s2 + v2))); // use arcsin if the s-component is dominant
    return 0.0; // argument is scaled too small to be meaningful, or it is a zero rotation, so return zero
}//Written by Moon Metty & Miranda Umino. Minor optimizations by Strife Onizuka</source>
</td></tr></table>
}}
}}

Latest revision as of 14:44, 22 March 2022

Summary

Function: float llRot2Angle( rotation rot );
0.0 Forced Delay
10.0 Energy

Returns a float that is the rotation angle represented by rot

• rotation rot

Use in conjunction with llRot2Axis.
To undo use llAxisAngle2Rot.

Caveats

This always returns a positive angle <= PI radians, that is, it is the unsigned minimum angle. A rotation of 3/2 PI radians (270 degrees) will return an angle of PI / 2 radians, not -PI / 2.

Examples

See Also

Functions

•  llAxisAngle2Rot
•  llRot2Axis
•  llRot2Up
•  llRot2Fwd
•  llRot2Left
•  llAngleBetween Similar functionality.

Deep Notes

Reference Implementation

float Rot2Angle(rotation a)//simple but turns out to not be very accurate.
{ 
    return 2.0 * llAcos(llSqrt((a.s * a.s) / (a.x * a.x + a.y * a.y + a.z * a.z + a.s * a.s));
}
float Rot2Angle(rotation r)//more complex implementation but more accurate, and reasonably fast.
{
    float s2 = r.s * r.s; // square of the s-element
    float v2 = r.x * r.x + r.y * r.y + r.z * r.z; // sum of the squares of the v-elements

    if (s2 < v2) // compare the s-component to the v-component
        return 2.0 * llAcos(llSqrt(s2 / (s2 + v2))); // use arccos if the v-component is dominant
    if (v2) // make sure the v-component is non-zero
        return 2.0 * llAsin(llSqrt(v2 / (s2 + v2))); // use arcsin if the s-component is dominant

    return 0.0; // argument is scaled too small to be meaningful, or it is a zero rotation, so return zero
}//Written by Moon Metty & Miranda Umino. Minor optimizations by Strife Onizuka

Signature

function float llRot2Angle( rotation rot );