Difference between revisions of "XTEA Strong Encryption Implementation"

From Second Life Wiki
Jump to navigation Jump to search
m (language tags to <source>)
 
(27 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{LSL Header}}{{RightToc}}
{{LSL Header}}{{RightToc}}


= GPL Statement =
XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
Version 1.0
Version 1.0
Copyright (C) 2007 by [http://morsedillon.com/ Morse Dillon] (morseATmorsedillon.com)


This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by [http://www.fsf.org/ the Free Software Foundation]; either version 2 ([http://www.fsf.org/licensing/licenses/info/GPLv2.html GPLv2]) of the License, or (at your option) any later version.
= Contributors =
*[http://morsedillon.com/ Morse Dillon], Author, (morseATmorsedillon.com)
*{{User|Strife Onizuka}} (blindwandererATgmail.com)
*[http://dedricmauriac.wordpress.com/ Dedric Mauriac], Contributor (dedric.mauriacATgmail.com)
*{{User|JB_Kraft}} (php 5 class)


This program is distributed in the hope that it will be useful, but '''WITHOUT ANY WARRANTY'''; without even the implied warranty of '''MERCHANTABILITY''' or '''FITNESS FOR A PARTICULAR PURPOSE'''. See the GNU General Public License for more details.
= License =
This work is licensed under a [http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported License]


You should have received a copy of the GNU General Public License along with this program; if not, write to:
You are free:
*'''to Share''' — to copy, distribute and transmit the work
*'''to Remix''' — to adapt the work


    The Free Software Foundation, Inc.
Under the following conditions
    51 Franklin Street, Fifth Floor
*'''Attribution.''' You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    Boston, MA 02110-1301, USA
 
# For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with [http://creativecommons.org/licenses/by/3.0/ a link to this web page].
# Any of the above conditions can be waived if you get permission from the copyright holder.
# Nothing in this license impairs or restricts the author's moral rights.
 
= Disclaimer =
This program is distributed in the hope that it will be useful, but '''WITHOUT ANY WARRANTY'''; without even the implied warranty of '''MERCHANTABILITY''' or '''FITNESS FOR A PARTICULAR PURPOSE'''.
 
'''IF YOU READ ONE THING IN HERE, READ THIS'''
 
It is VERY important to remember that there is no such thing as ''cookbook cryptography''!  Simply using this cypher does not guarantee security.  Security is an end-to-end concern and responsibility lies with you to thoroughly examine your project from all possible angles if valuable data is at risk.  If you doubt this, ask any thief how they'd rather break into your house - futzing about with picking a high-security deadbolt on the front door or walking in through the back door that you left open.


= Documentation =
= Documentation =
Line 23: Line 38:
''If you do decide to use this code in a project, I'd appreciate hearing about it.  You can reach me by e-mail at: morseATmorsedillon.com''
''If you do decide to use this code in a project, I'd appreciate hearing about it.  You can reach me by e-mail at: morseATmorsedillon.com''


== About TEA & XTEA ==
== About TEA ==


TEA was originally designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory.  The algorithm itself is not subject to any patents.  While the original TEA was found to have some minor weaknesses, XTEA (implemented herein) addresses these.
The Tiny Encryption Algorithm ([http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm TEA]), was originally designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory.  The [http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html algorithm] itself is not subject to any patents.  While the original TEA was found to have some minor weaknesses, the eXtended Tiny Encryption Algorithm ([http://en.wikipedia.org/wiki/XTEA XTEA]) implemented herein addresses these.


TEA and its derivatives consist of 64-bit block Feistel network with a 128-bit key.  This implementation uses six cycles, or rounds, which is less than one would like but still provides a reasonable level of security (16 is sufficient while 8 is enough for most applications). Six is said to achieve theoretically good dispersion, but should more security be desired the number of cycles can easily be modified by changing the CYCLES global variable. Due to the low execution speed of LSL scripts, it's suggested to make this as low as your comfort level allows.  Encryption time scales linearly with the
''NOTE: XTEA has been superseded by Corrected Block TEA ([http://en.wikipedia.org/wiki/XXTEA XXTEA])''
number of cycles.


For more information about XTEA, see the following:
TEA and its derivatives consist of 64-bit block [http://en.wikipedia.org/wiki/Feistel_cipher Feistel network] with a 128-bit key.  This implementation uses six cycles, or rounds, which is less than one would like but still provides a reasonable level of security (16 is sufficient while 8 is enough for most applications).  Six is said to achieve theoretically good dispersion, but should more security be desired the number of cycles can easily be modified by changing the CYCLES global variable.  Due to the low execution speed of LSL scripts, it's suggested to make this as low as your comfort level allows. Encryption time scales linearly with the number of cycles.
 
Original Paper by Walker and Needham
[http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html]
 
 
Wikipedia on TEA
[http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm]


== About this implementation ==
== About this implementation ==
Line 44: Line 51:
If you plan to place this code into the same script as that needing encryption facilities, you need only call the following functions:
If you plan to place this code into the same script as that needing encryption facilities, you need only call the following functions:


<lsl>
<source lang="lsl2">
string Encrypt(string clearText)
string Encrypt(string clearText)
string Decrypt(string cypherText)
string Decrypt(string cypherText)
</lsl>
</source>


Simple as that.
Simple as that.
Line 56: Line 63:


==Changes==
==Changes==
===Version 1.1===
*Changed to treat [[Right Shift]] as if integers were unsigned


===Version 1.0a - Alpha===
===Version 1.0a - Alpha===
Line 66: Line 76:
*Initial Release
*Initial Release


== Future Changes ==
== Future Recommendations ==
It would be nice if it supported UTF-8; but adding that would be a lot of work. The main issue is the decoding, the bytes would have to be reassembled into characters. It would be time consuming. Another possibility would be to implement XTEA to output to BASE64 instead of hex strings (also time consuming to implement).
*Support [[UTF-8]]
*Output to [[Base64]] instead of [[Hex]] strings
*Append hash to the message to verify integrity of data
*Hash clear-text passwords into 128 bit keys
*Upgrade to XXTEA
 
= Code =
 


== Read This ==
'''IF YOU READ ONE THING IN HERE, READ THIS'''


It is VERY important to remember that there is no such thing as ''cookbook cryptography''!  Simply using this cypher does not guarantee security.  Security is an end-to-end concern and responsibility lies with you to thoroughly examine your project from all possible angles if valuable data is at risk.  If you doubt this, ask any thief how they'd rather break into your house - futzing about with picking a high-security deadbolt on the front door or walking in through the back door that you left open.


= Code =
== Original ==
== Documentation Comments ==
<source lang="lsl2">
These comments must appear within the script. The script must be modifiable (open-source) even when sold with your product. You may wish to have your encryption script separated from the actual business logic of your objects to protect your IP.
<lsl>
//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
//Version 1.0
//Version 1.0
Line 179: Line 192:
//deadbolt on the front door or walking in through the back door that you  
//deadbolt on the front door or walking in through the back door that you  
//left open.
//left open.
</lsl>


== Cipher ==
//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************
The XTEA cipher is at the heart of this script. It encrypts/decrypts a block of 64 bits at a time (the equivalent of two 32-bit integers or eight bytes).


=== Encryption ===
//ENCRYPTION KEYS KEY[1-4]
This is the implementation of XTEA proper.  It takes a block of clear-text consisting of two dwords contained in LSL integers and a 128-bit key contained in an LSL list of 4 integersThe function then returns the cyphertext in an LSL list of two integers.
//These together make up the 128-bit XTEA encryption key.  See the above
<lsl>
//documentation for details.  Whatever you do, don't leave them as the default.
list TEAEncrypt(integer dword1, integer dword2,list cypherkey){
integer KEY1 = 11111111;
integer KEY2 = 22222222;
            list cryptlist = [];
integer KEY3 = 33333333;
integer KEY4 = 44444444;
            //Set n to the number of cycles given in the CYCLES global variable
 
            integer n = CYCLES;
//DEBUG_FLAG
//If set to 1, will cause debug text to be printed containing some
            integer sum = 0;
//intermediate cleartext/cyphertext and the resultant cyphertext/cleartext. 
//Do not leave this enabled in production environments!!!!
            //Operate for the specified number of cycles.
integer DEBUG_FLAG = 0;
            while (n-- > 0){
 
                dword1 = dword1 + ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );
//COMM_CHANNEL
                sum += delta;
//Specifies which channel should be used for debug and test harness communication.
                dword2 = dword2 + ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey, (sum >> 11 & 3) ) );
integer COMM_CHANNEL = 0;
            }
 
//CYCLES
            cryptlist = [dword1,dword2];
//Specifies the number of rounds to be used. See the above documentation for
//details.
            return cryptlist;
integer CYCLES = 6;
}
 
</lsl>
//******************USER-CONFIGURABLE GLOBALS END HERE*********************
 
//Other Globals
list cypherkey = [];
=== Decryption ===
integer delta = 0x9E3779B9;
This is the implementation of XTEA proper.  It takes a block of cypher-text consisting of two dwords contained in LSL integers and a 128-bit key contained in an LSL list of 4 integers.  The function then returns the clear-text in an LSL list of two integers.
 
<lsl>
 
list TEADecrypt(integer dword1, integer dword2,list cypherkey)
 
//Function: ord
//Returns the index of an ASCII character
integer ord(string chr)
{
{
    string ASCII = "             \n                   !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
            list cryptlist = [];
    if(llStringLength(chr) != 1) return -1;
    if(chr == " ") return 32;
             //Set n to the number of cycles given in the CYCLES global variable
    return llSubStringIndex(ASCII, chr);
            integer n = CYCLES;
            integer sum = delta * CYCLES;
            //Operate for the specified number of cycles.       
            while (n-- > 0){
                dword2 = dword2 - ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey, (sum >> 11 & 3) ) );
                sum -= delta;
                dword1 = dword1 - ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );      
            }
            cryptlist = [dword1,dword2];
            return cryptlist;
}
}
</lsl>


== Original ==
<lsl>
// Include the documentation comments from above (separated here only for easier management)




//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************
//Function: chr
//Returns the ASCII character correspondent to index i
string chr(integer i)
{
    string ASCII = "            \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
    i %= 127;
    return llGetSubString(ASCII, i, i);
}


//ENCRYPTION KEYS KEY[1-4]
 
//These together make up the 128-bit XTEA encryption key. See the above
                   
//documentation for details.  Whatever you do, don't leave them as the default.
//Function: DWord2Hex
integer KEY1 = 11111111;
//Converts a dword containted in a LSL integer to hexadecimal format.      
integer KEY2 = 22222222;
string DWord2Hex(integer m){
integer KEY3 = 33333333;
   
integer KEY4 = 44444444;
    string result;
 
    integer i = 0;
//DEBUG_FLAG
    integer index = 0;
//If set to 1, will cause debug text to be printed containing some
   
//intermediate cleartext/cyphertext and the resultant cyphertext/cleartext.
    //Define character string [0-F] for use in building the hex.
//Do not leave this enabled in production environments!!!!
    string characters = "0123456789ABCDEF"; 
integer DEBUG_FLAG = 0;
   
 
    //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
//COMM_CHANNEL
    for (i = 0; i < 8; i++){
//Specifies which channel should be used for debug and test harness communication.
        //Get a nibble by right-shifting and masking off 4 bits.
integer COMM_CHANNEL = 0;
        index  = (m >> (i * 4)) & 0xF;
        //Grab character from the characters string at index position and add it to the result string.
        result = llInsertString(result, 0, llGetSubString(characters,index,index));
    }
   
    return result;
}


//CYCLES
//Specifies the number of rounds to be used.  See the above documentation for
//details.
integer CYCLES = 6;


//******************USER-CONFIGURABLE GLOBALS END HERE*********************


//Other Globals
//Function:  Hex2DWword
list cypherkey = [];
//Converts a string containing a hexadecimal number to a dword contained in a LSL integer.
integer delta = 0x9E3779B9;
integer Hex2DWord(string m){
    integer result = 0;
    integer i = 0;
    string digit;
    integer value;
    integer index;
   
    string characters = "0123456789ABCDEF";
   
    for (i = 0; i < 8; i++){
       
        index = 8 - (i + 1);
        digit = llGetSubString(m,index,index);
       
        value = llSubStringIndex(characters, digit);
                       
        result = result | value << (i * 4);
       
    }
   
    return result;
}






//Function: ord
//Function: Encrypt
//Returns the index of an ASCII character
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
integer ord(string chr)
string Encrypt(string cleartext){
{
       
    string ASCII = "            \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
        //Initialize variables.
    if(llStringLength(chr) != 1) return -1;
        integer dword1 = 0;
    if(chr == " ") return 32;
        integer dword2 = 0;
    return llSubStringIndex(ASCII, chr);
        integer cyphertext_numeric;
}
        list cypherblock;
        string cyphertext = "";


 
        //Pad cleartext string to the nearest multiple of 8.
 
        while(llStringLength(cleartext) & 0x7) {
//Function: chr
            cleartext += " ";
//Returns the ASCII character correspondent to index i
        }
string chr(integer i)
       
{
        //Define more variables pertaining to while loop.
    string ASCII = "             \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
        integer stringlength = llStringLength(cleartext);  
    i %= 127;
        integer i=0;
    return llGetSubString(ASCII, i, i);
        integer character;
}
       
 
        //Step through cleartext string, encrypting it in 64-bit (8 character) blocks.
 
        while (i < stringlength){
                   
           
//Function: DWord2Hex
            //Pack dword1 with 4 bytes. Do so by bit-shifting in each character.
//Converts a dword containted in a LSL integer to hexadecimal format.      
            //4th byte winds up in the most-significant position.
string DWord2Hex(integer m){
            dword1 =  ord(llGetSubString(cleartext,i,i));
   
            i++;
    string result;
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 8);
    integer i = 0;
            i++;
    integer index = 0;
            dword1 = dword1 | (ord(llGetSubString(cleartext,i,i)) << 16);
   
            i++;
    //Define character string [0-F] for use in building the hex.
            dword1 = dword1 | (ord(llGetSubString(cleartext,i,i)) << 24);
    string characters = "0123456789ABCDEF";  
            i++;
   
           
    //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
            //Do it again, this time for dword2                           
    for (i = 0; i < 8; i++){
            dword2 = ord(llGetSubString(cleartext,i,i));
        //Get a nibble by right-shifting and masking off 4 bits.
            i++;
        index  = (m >> (i * 4)) & 0xF;
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 8;
        //Grab character from the characters string at index position and add it to the result string.
            i++;
        result = llInsertString(result, 0, llGetSubString(characters,index,index));
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 16;
    }
            i++;
   
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 24;
    return result;
            i++;
}
 
            //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.
            cypherblock = TEAEncrypt(dword1,dword2,cypherkey);
            //Convert dword values from cypherblock to hex and append to cyphertext.
            cyphertext = cyphertext + DWord2Hex(llList2Integer(cypherblock,0)) + DWord2Hex(llList2Integer(cypherblock,1));
                   
            //Reset variables for the next round, just to be safe.
            dword1 = 0;
            dword2 = 0;
            cypherblock = [];
           
            if(DEBUG_FLAG){
                llOwnerSay("Pre-Crypt DWords: " + (string)dword1 + "," + (string)dword2);
                llOwnerSay("Post-Crypt DWords: " + (string)llList2Integer(cypherblock,1) + "," + (string)llList2Integer(cypherblock,2));   
                llOwnerSay("Post-Crypt Hex: " + DWord2Hex(llList2Integer(cypherblock,1)) + "," + DWord2Hex(llList2Integer(cypherblock,2)));
            }
           
        } 
       
        return cyphertext;      
}






//Function: Hex2DWword
//Function: Decrypt
//Converts a string containing a hexadecimal number to a dword contained in a LSL integer.
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
integer Hex2DWord(string m){
string Decrypt(string cyphertext){
    integer result = 0;
    integer i = 0;
    string digit;
    integer value;
    integer index;
   
    string characters = "0123456789ABCDEF";
   
    for (i = 0; i < 8; i++){
          
          
         index = 8 - (i + 1);
         //Initialize variables.
         digit = llGetSubString(m,index,index);
        string hexvalue1 = "";
        string hexvalue2 = "";
        integer dword1 = 0;
        integer dword2 = 0;
        list clearblock = []; //res
         string cleartext = "";
        integer i;
          
          
        value = llSubStringIndex(characters, digit);
                       
        result = result | value << (i * 4);
          
          
    }
        //Step through cyphertext string, descrypting it block by block.
        while (i < llStringLength(cyphertext)){
           
            //Pull first 32 bits worth of hexadecimal into hexvalue1
            hexvalue1 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;
           
            //Pull second 32 bits worth of hexadecimal into hexvalue2
            hexvalue2 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;
 
            //Convert hexvalues to dwords contained in LSL integers.
            dword1 = Hex2DWord(hexvalue1);
            dword2 = Hex2DWord(hexvalue2);
      
      
    return result;
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
}
            clearblock = TEADecrypt(dword1, dword2, cypherkey);
           
            //Append first 4 characters of ASCII to cleartext string.
            //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
            cleartext += chr( llList2Integer(clearblock,0) & 0x000000FF);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,0) & 0xFF000000)  >> 24);
 
            //Append second 4 characters of ASCII to cleartext string.
            cleartext += chr( llList2Integer(clearblock,1) & 0x000000FF);
            cleartext += chr( (llList2Integer(clearblock,1) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,1) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,1) & 0xFF000000)  >> 24);
 
            //Reset variables for the next two blocks of decrypt.           
            hexvalue1 = "";
            hexvalue2 = "";
            dword1 = 0;
            dword2 = 0;
            clearblock = [];
           
            if(DEBUG_FLAG){
                llOwnerSay("Pre-Decrypt Hex: " + hexvalue1 + "," + hexvalue2);
                llOwnerSay("Pre-Decrypt DWords: " + (string)dword1 + "," + (string)dword2);
                llOwnerSay("Post-Decrypt DWords: " + (string)llList2Integer(clearblock,1) + "," + (string)llList2Integer(clearblock,2));
            }
           
        }
               
        return cleartext;      
}






//Function: Encrypt
//Function: TEAEncrypt
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
//This is the implementation of XTEA proper.  It takes a block of cleartext
string Encrypt(string cleartext){
//consisting of two dwords contained in LSL integers and a 128-bit key
       
//contained in an LSL list of 4 integers.  The function then returns
        //Initialize variables.
//the cyphertext in an LSL list of two integers.
        integer dword1 = 0;
list TEAEncrypt(integer dword1, integer dword2,list cypherkey){
        integer dword2 = 0;
   
        integer cyphertext_numeric;
            list cryptlist = [];
        list cypherblock;
           
        string cyphertext = "";
            //Set n to the number of cycles given in the CYCLES global variable
 
            integer n = CYCLES;
        //Pad cleartext string to the nearest multiple of 8.
                       
        while(llStringLength(cleartext) & 0x7) {
            integer sum = 0;
            cleartext += " ";
           
        }
            //Operate for the specified number of cycles.
       
            while (n-- > 0){
        //Define more variables pertaining to while loop.
                dword1 = dword1 + ( ( dword2 << 4 ^ ((dword2 >> 5) & 0x07FFFFFF) ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );
        integer stringlength = llStringLength(cleartext);
                sum += delta;
        integer i=0;
                dword2 = dword2 + ( ( dword1 << 4 ^ ((dword1 >> 5) & 0x07FFFFFF) ) + dword1 ^ sum + llList2Integer(cypherkey, ((sum >> 11) & 3) ) );
        integer character;
            }
       
        //Step through cleartext string, encrypting it in 64-bit (8 character) blocks.
        while (i < stringlength){
              
              
             //Pack dword1 with 4 bytesDo so by bit-shifting in each character.
             cryptlist = [dword1,dword2];
            //4th byte winds up in the most-significant position.
 
            dword1 =  ord(llGetSubString(cleartext,i,i));
            return cryptlist;
            i++;
}
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 8);
 
            i++;
 
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 16);
 
            i++;
//Function: TEADecrypt
             dword1 = dword1 | (ord(llGetSubString(cleartext,i,i)) << 24);
//This is the implementation of XTEA properIt takes a block of cyphertext
            i++;
//consisting of two dwords contained in LSL integers and a 128-bit key
//contained in an LSL list of 4 integers. The function then returns
//the cleartext in an LSL list of two integers.
list TEADecrypt(integer dword1, integer dword2,list cypherkey){
   
             list cryptlist = [];
              
              
             //Do it again, this time for dword2                           
             //Set n to the number of cycles given in the CYCLES global variable
             dword2 = ord(llGetSubString(cleartext,i,i));
             integer n = CYCLES;
            i++;
                       
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 8;
             integer sum = delta * CYCLES;
             i++;
            dword2 = dword2 | ord(llGetSubString(cleartext,i,i)) << 16;
            i++;
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 24;
            i++;


             //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.
             //Operate for the specified number of cycles.      
             cypherblock = TEAEncrypt(dword1,dword2,cypherkey);
             while (n-- > 0){
                dword2 = dword2 - ( ( dword1 << 4 ^ ((dword1 >> 5) & 0x07FFFFFF) ) + dword1 ^ sum + llList2Integer(cypherkey, ((sum >> 11) & 3) ) );
            //Convert dword values from cypherblock to hex and append to cyphertext.
                 sum -= delta;
            cyphertext = cyphertext + DWord2Hex(llList2Integer(cypherblock,0)) + DWord2Hex(llList2Integer(cypherblock,1));
                 dword1 = dword1 - ( ( dword2 << 4 ^ ((dword2 >> 5) & 0x07FFFFFF) ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );      
                   
            //Reset variables for the next round, just to be safe.
            dword1 = 0;
            dword2 = 0;
            cypherblock = [];
           
            if(DEBUG_FLAG){
                llOwnerSay("Pre-Crypt DWords: " + (string)dword1 + "," + (string)dword2);
                 llOwnerSay("Post-Crypt DWords: " + (string)llList2Integer(cypherblock,1) + "," + (string)llList2Integer(cypherblock,2));  
                 llOwnerSay("Post-Crypt Hex: " + DWord2Hex(llList2Integer(cypherblock,1)) + "," + DWord2Hex(llList2Integer(cypherblock,2)));
             }
             }
              
              
        } 
            cryptlist = [dword1,dword2];
       
            return cryptlist;
        return cyphertext;      
}
}
</source>
 


== Usage Example ==
Listens on COMM_CHANNEL for a message and encrypts it, then turns around and decrypts the resultant cypher-text. Object than says the encrypted and decrypted messages to the owner.
<source lang="lsl2">
default
{
    state_entry()
    {
        llListen(COMM_CHANNEL, "", NULL_KEY, "");
        cypherkey = [KEY1,KEY2,KEY3,KEY4];
    }


//Function: Decrypt
    listen(integer channel, string name, key id, string message)
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
    {
string Decrypt(string cyphertext){
        string temp_cyphertext = Encrypt(message);
          
          
        //Initialize variables.
         string temp_cleartext = Decrypt(temp_cyphertext);
         string hexvalue1 = "";
        string hexvalue2 = "";
        integer dword1 = 0;
        integer dword2 = 0;
        list clearblock = []; //res
        string cleartext = "";
        integer i;
          
          
          
         llOwnerSay("\nOriginal Cleartext: " + message + "\nCyphertext: " + temp_cyphertext + "\nDecrypted Cleartext: " + temp_cleartext);
        //Step through cyphertext string, descrypting it block by block.
    }
        while (i < llStringLength(cyphertext)){
}
           
</source>
            //Pull first 32 bits worth of hexadecimal into hexvalue1
            hexvalue1 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;
           
            //Pull second 32 bits worth of hexadecimal into hexvalue2
            hexvalue2 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;


            //Convert hexvalues to dwords contained in LSL integers.
== Optimized ==
            dword1 = Hex2DWord(hexvalue1);
This version is untested but if it works should run faster (and be able to handle larger strings).
            dword2 = Hex2DWord(hexvalue2);
   
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
            clearblock = TEADecrypt(dword1, dword2, cypherkey);
           
            //Append first 4 characters of ASCII to cleartext string.
            //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
            cleartext += chr( llList2Integer(clearblock,0) & 0x000000FF);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,0) & 0xFF000000)  >> 24);


            //Append second 4 characters of ASCII to cleartext string.
<source lang="lsl2">
            cleartext += chr( llList2Integer(clearblock,1) & 0x000000FF);
// Include the documentation comments from above (separated here only for easier management)
            cleartext += chr( (llList2Integer(clearblock,1) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,1) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,1) & 0xFF000000)  >> 24);


            //Reset variables for the next two blocks of decrypt.           
//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
            hexvalue1 = "";
//Version 1.0a Alpha
            hexvalue2 = "";
//Copyright (C) 2007 by Strife Onizuka (blindwandererATgmail.com)
            dword1 = 0;
//
            dword2 = 0;
//Version 1.0
            clearblock = [];
//Copyright (C) 2007 by Morse Dillon (morseATmorsedillon.com)
           
//
            if(DEBUG_FLAG){
//This program is free software; you can redistribute it and/or
                llOwnerSay("Pre-Decrypt Hex: " + hexvalue1 + "," + hexvalue2);
//modify it under the terms of the GNU General Public License
                llOwnerSay("Pre-Decrypt DWords: " + (string)dword1 + "," + (string)dword2);
//as published by the Free Software Foundation; either version 2
                llOwnerSay("Post-Decrypt DWords: " + (string)llList2Integer(clearblock,1) + "," + (string)llList2Integer(clearblock,2));
//of the License, or (at your option) any later version.
            }
//
           
//This program is distributed in the hope that it will be useful,
        }
//but WITHOUT ANY WARRANTY; without even the implied warranty of
               
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSESee the
        return cleartext;      
//GNU General Public License for more details.
}
//
 
//You should have received a copy of the GNU General Public License
 
//along with this program; if not, write to the Free Software
 
//Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
//Function: TEADecrypt
//02110-1301, USA.
//This is the implementation of XTEA properIt takes a block of cleartext
//========================================================================
//consisting of two dwords contained in LSL integers and a 128-bit key
//
//contained in an LSL list of 4 integers.  The function then returns
//Included at the end of this source listing is a small bit of example
//the cyphertext in an LSL list of two integers.
//code that shows the usage.  If you wish to include this implementation
list TEAEncrypt(integer dword1, integer dword2,list cypherkey){
//in your own work, just replace the example code with your own. Also,  
   
//please do not reuse or redistribute this work without including the
            list cryptlist = [];
//above text attributing this code to its author Morse Dillon, the above
           
//GPL statement, and this documentation.
            //Set n to the number of cycles given in the CYCLES global variable
//
            integer n = CYCLES;
//This is an implentation of the XTEA (eXtended Tiny Encryption Algorithm)
                       
//block cypher(X)TEA is a very good choice of cipher when security
            integer sum = 0;
//is important but computational power is limited.  Although I did a
           
//lot of work on this implementation, enormous amounts of credit must
            //Operate for the specified number of cycles.
//be given to the creators of the algorithm and those who came before
            while (n-- > 0){
//me to implement it in other languages and computing environments.
                dword1 = dword1 + ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );
//
                sum += delta;
//***If you do decide to use this code in a project, I'd appreciate
                dword2 = dword2 + ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey, (sum >> 11 & 3) ) );
//hearing about it.  You can reach me by e-mail at: 
            }
//morseATmorsedillon.com
           
//
            cryptlist = [dword1,dword2];
//
 
//ABOUT TEA AND XTEA
            return cryptlist;
//------------------
}
//TEA was originally designed by David Wheeler and Roger Needham
 
//of the Cambridge Computer Laboratory. The algorithm itself is not
 
//subject to any patents.  While the original TEA was found to have
 
//some minor weaknesses, XTEA (implemented herein) addresses these. 
//Function: TEADecrypt
//
//This is the implementation of XTEA properIt takes a block of cyphertext
//TEA and its derivatives consist of 64-bit block Feistel network
//consisting of two dwords contained in LSL integers and a 128-bit key
//with a 128-bit key.  This implementation uses six cycles, or rounds,
//contained in an LSL list of 4 integers.  The function then returns
//which is less than one would like but still provides a reasonable
//the cleartext in an LSL list of two integers.
//level of security (16 is sufficient while 8 is enough for most
list TEADecrypt(integer dword1, integer dword2,list cypherkey){
//applications).  Six is said to achieve theoretically good dispersion,  
   
//but should more security be desired the number of cycles can easily be
            list cryptlist = [];
//modified by changing the CYCLES global variable. Due to the low
           
//execution speed of LSL scripts, it's suggested to make this as low as
            //Set n to the number of cycles given in the CYCLES global variable
//your comfort level allows.  Encryption time scales linearly with the
            integer n = CYCLES;
//number of cycles.
                       
//
            integer sum = delta * CYCLES;
//For more information about XTEA, see the following:
 
//
            //Operate for the specified number of cycles.      
//Original Paper by Walker and Needham
            while (n-- > 0){
//http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html
                dword2 = dword2 - ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey, (sum >> 11 & 3) ) );
//
                sum -= delta;
//Wikipedia on TEA
                dword1 = dword1 - ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );       
//http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
            }
//
           
//
            cryptlist = [dword1,dword2];
//ABOUT THIS IMPLEMENTATION
            return cryptlist;
//-------------------------
}
//This is a barebones implementation, and is meant to be included in
</lsl>
//the body of the script needing encryption facilities or wrapped
== Usage Example ==
//in a link message handler.  If the latter approach is desired, care
Listens on COMM_CHANNEL for a message and encrypts it, then turns around and decrypts the resultant cypher-text. Object than says the encrypted and decrypted messages to the owner.
//should be taken to only send link messages to the prim containing
<lsl>
//this implementation.  If ALL_PRIMS is used as the destination,
default
//one could link a link message listener to the object and intercept
{
//cleartext communications.
    state_entry()
    {
        llListen(COMM_CHANNEL, "", NULL_KEY, "");
        cypherkey = [KEY1,KEY2,KEY3,KEY4];
    }
 
    listen(integer channel, string name, key id, string message)
    {
        string temp_cyphertext = Encrypt(message);
       
        string temp_cleartext = Decrypt(temp_cyphertext);
       
        llOwnerSay("\nOriginal Cleartext: " + message + "\nCyphertext: " + temp_cyphertext + "\nDecrypted Cleartext: " + temp_cleartext);
    }
}
</lsl>
 
== Optimized ==
This version is untested but if it works should run faster (and be able to handle larger strings).
 
<lsl>
// Include the documentation comments from above (separated here only for easier management)
 
//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
//Version 1.0a Alpha
//Copyright (C) 2007 by Strife Onizuka (blindwandererATgmail.com)
//
//
//Version 1.0
//If you plan to place this code into the same script as that needing
//Copyright (C) 2007 by Morse Dillon (morseATmorsedillon.com)
//encryption facilities, you need only call the following functions:
//
//string Encrypt(string cleartext)
//string Decrypt(string cyphertext)
//
//
//This program is free software; you can redistribute it and/or
//Simple as that.
//modify it under the terms of the GNU General Public License
//as published by the Free Software Foundation; either version 2
//of the License, or (at your option) any later version.
//
//
//This program is distributed in the hope that it will be useful,
//This implementation does not provide any secure key exchange, so in
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//terms of key generation and exchange you're on your own.
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//GNU General Public License for more details.
//
//
//You should have received a copy of the GNU General Public License
//The 128-bit key is contained in four LSL integers:  KEY1, KEY2, KEY3,
//along with this program; if not, write to the Free Software
//and KEY4. These are global variables at the beginning of the source
//Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
//and can be set using a method that works for you.
//02110-1301, USA.
//========================================================================
//
//
//Included at the end of this source listing is a small bit of example
//code that shows the usage.  If you wish to include this implementation
//in your own work, just replace the example code with your own.  Also,
//please do not reuse or redistribute this work without including the
//above text attributing this code to its author Morse Dillon, the above
//GPL statement, and this documentation.
//
//
//This is an implentation of the XTEA (eXtended Tiny Encryption Algorithm)
//CHANGES
//block cypher. (X)TEA is a very good choice of cipher when security
//-------
//is important but computational power is limited. Although I did a
//
//lot of work on this implementation, enormous amounts of credit must
//1.0a - Alpha
//be given to the creators of the algorithm and those who came before
//*General optimization to run faster and use less bytecode.
//me to implement it in other languages and computing environments.
//*Encrypt: Pad works differently, no longer extra characters appended to the output.
//*TEAEncrypt: Changed the return type
//*ord: Added null support.
//
//
//***If you do decide to use this code in a project, I'd appreciate
//1.0
//hearing about it. You can reach me by e-mail at: 
//*Initial Release
//morseATmorsedillon.com
//
//
//
//
//ABOUT TEA AND XTEA
//FUTURE CHANGES
//------------------
//--------------
//TEA was originally designed by David Wheeler and Roger Needham
//of the Cambridge Computer Laboratory.  The algorithm itself is not
//subject to any patents.  While the original TEA was found to have
//some minor weaknesses, XTEA (implemented herein) addresses these. 
//
//
//TEA and its derivatives consist of 64-bit block Feistel network
//It would be nice if it supported UTF-8; but adding that would be alot
//with a 128-bit key.  This implementation uses six cycles, or rounds,
//of work. The main issue is the decoding, the bytes would have to be
//which is less than one would like but still provides a reasonable
//reassembled into characters. It would be time consuming. Another possibility
//level of security (16 is sufficient while 8 is enough for most
//would be to implement XTEA to output to BASE64 instead of hex strings (also
//applications). Six is said to achieve theoretically good dispersion,  
//time consuming to implement).
//but should more security be desired the number of cycles can easily be  
//modified by changing the CYCLES global variable. Due to the low
//execution speed of LSL scripts, it's suggested to make this as low as
//your comfort level allows.  Encryption time scales linearly with the
//number of cycles.
//
//
//For more information about XTEA, see the following:
//
//
//Original Paper by Walker and Needham
//**************IF YOU READ ONE THING IN HERE, READ THIS*******************
//http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html
//It is VERY important to remember that there is no such thing as
//
//'cookbook cryptography'!  Simply using this cypher does not guarantee
//Wikipedia on TEA
//security.  Security is an end-to-end concern and responsibility lies
//http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
//with you to thoroughly examine your project from all possible angles
//
//if valuable data is at risk.  If you doubt this, ask any thief how they'd
//
//rather break into your house - futzing about with picking a high-security
//ABOUT THIS IMPLEMENTATION
//deadbolt on the front door or walking in through the back door that you  
//-------------------------
//left open.
//This is a barebones implementation, and is meant to be included in
 
//the body of the script needing encryption facilities or wrapped
//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************
//in a link message handler.  If the latter approach is desired, care
 
//should be taken to only send link messages to the prim containing
//ENCRYPTION KEYS KEY[1-4]
//this implementation.  If ALL_PRIMS is used as the destination,
//These together make up the 128-bit XTEA encryption key.  See the above
//one could link a link message listener to the object and intercept
//documentation for details.  Whatever you do, don't leave them as the default.
//cleartext communications. 
//Don't be stupid and make it obvious like your av's key.
//
integer KEY1 = 11111111;
//If you plan to place this code into the same script as that needing
integer KEY2 = 22222222;
//encryption facilities, you need only call the following functions:
integer KEY3 = 33333333;
//
integer KEY4 = 44444444;
//string Encrypt(string cleartext)
 
//string Decrypt(string cyphertext)
//COMM_CHANNEL
//
//Specifies which channel should be used for debug and test harness communication.
//Simple as that.
integer COMM_CHANNEL = 0;
//
 
//This implementation does not provide any secure key exchange, so in
//CYCLES
//terms of key generation and exchange you're on your own.
//Specifies the number of rounds to be used.  See the above documentation for
//
//details.
//The 128-bit key is contained in four LSL integers:  KEY1, KEY2, KEY3,
integer CYCLES = 6;
//and KEY4.  These are global variables at the beginning of the source
 
//and can be set using a method that works for you.
//******************USER-CONFIGURABLE GLOBALS END HERE*********************
//
 
//
//Other Globals
//CHANGES
list cypherkey = [];
//-------
integer delta = 0x9E3779B9;
//
 
//1.0a - Alpha
string ASCII = "            \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
//*General optimization to run faster and use less bytecode.
string characters = "0123456789ABCDEF";
//*Encrypt: Pad works differently, no longer extra characters appended to the output.
 
//*TEAEncrypt: Changed the return type
//Function: ord
//*ord: Added null support.
//Returns the index of an ASCII character
//
integer ord(string chr)
//1.0
{
//*Initial Release
    if(chr)
//
    {
//
        if(llStringLength(chr) > 1) return -1;
//FUTURE CHANGES
        if(chr == " ") return 32;
//--------------
        return llSubStringIndex(ASCII, chr);
//
    }
//It would be nice if it supported UTF-8; but adding that would be alot
    return 0;
//of work. The main issue is the decoding, the bytes would have to be
}
//reassembled into characters. It would be time consuming. Another possibility
 
//would be to implement XTEA to output to BASE64 instead of hex strings (also
//Function: chr
//time consuming to implement).
//Returns the ASCII character correspondent to index i
//
string chr(integer i)
//
{
//**************IF YOU READ ONE THING IN HERE, READ THIS*******************
    if(i)
//It is VERY important to remember that there is no such thing as
        return llGetSubString(ASCII, i %= 127, i);
//'cookbook cryptography'!  Simply using this cypher does not guarantee
    return "";
//security.  Security is an end-to-end concern and responsibility lies
}
//with you to thoroughly examine your project from all possible angles
//if valuable data is at risk.  If you doubt this, ask any thief how they'd
//rather break into your house - futzing about with picking a high-security
//deadbolt on the front door or walking in through the back door that you  
//left open.


//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************
//Function:  DWord2Hex
//Converts a dword contained in a LSL integer to hexadecimal format.       
string DWord2Hex(integer m)
{
    string result;
    integer i = 0;


//ENCRYPTION KEYS KEY[1-4]
    //Define character string [0-F] for use in building the hex.
//These together make up the 128-bit XTEA encryption key. See the above
    //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
//documentation for details.  Whatever you do, don't leave them as the default.
    do{
//Don't be stupid and make it obvious like your av's key.
        integer index = (m >> i) & 0xF;
integer KEY1 = 11111111;
        result = llGetSubString(characters, index, index) + result;
integer KEY2 = 22222222;
    }while((i += 4) < 32);
integer KEY3 = 33333333;
    return result;
integer KEY4 = 44444444;
}


//COMM_CHANNEL
//Function: Encrypt
//Specifies which channel should be used for debug and test harness communication.
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
integer COMM_CHANNEL = 0;
string Encrypt(string cleartext)
 
{
//CYCLES
    string cyphertext = "";
//Specifies the number of rounds to be usedSee the above documentation for
    integer i = llStringLength(cleartext);
//details.
    if((i += (0x7 & -i)))//Pad cleartext string to the nearest multiple of 8.
integer CYCLES = 6;
    {
        //Step through cleartext string backwords, encrypting it in 64-bit (8 character) blocks.
        do{
            //i=~-i is the same as --i, just a bit faster and lighter on bytecode; requires one less stack manipulation.
            //Pack dword1 with 4 bytesDo so by bit-shifting in each character.
            //4th byte winds up in the most-significant position.
            integer dword2 =    (    ord(llGetSubString(cleartext,i=~-i,i))      )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)    ;


//******************USER-CONFIGURABLE GLOBALS END HERE*********************
            //Do it again, this time for dword1                           
            integer dword1 =    (    ord(llGetSubString(cleartext,i=~-i,i))      )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)    ;


//Other Globals
            //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.
list cypherkey = [];
integer delta = 0x9E3779B9;


string ASCII = "             \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
             //Convert dword values from cypherblock to hex and append to cyphertext.
string characters = "0123456789ABCDEF";
            cyphertext = TEAEncrypt(dword1,dword2,cypherkey) + cyphertext;
 
         }while(i);
//Function: ord
//Returns the index of an ASCII character
integer ord(string chr)
{
    if(chr)
    {
        if(llStringLength(chr) > 1) return -1;
         if(chr == " ") return 32;
        return llSubStringIndex(ASCII, chr);
     }
     }
     return 0;
     return cyphertext;
}
}


//Function: chr
//Returns the ASCII character correspondent to index i
string chr(integer i)
{
    if(i)
        return llGetSubString(ASCII, i %= 127, i);
    return "";
}


//Function: DWord2Hex
//Function: Decrypt
//Converts a dword contained in a LSL integer to hexadecimal format.      
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
string DWord2Hex(integer m)
string Decrypt(string cyphertext){
{
    string result;
    integer i = 0;


     //Define character string [0-F] for use in building the hex.
     //Initialize variables.
     //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
     string cleartext = "";
     do{
     integer i = -llStringLength(cyphertext);
        integer index = (m >> i) & 0xF;
        result = llGetSubString(characters, index, index) + result;
    }while((i += 4) < 32);
    return result;
}


//Function: Encrypt
    //Step through cyphertext string, decrypting it block by block.
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
     if((i -= (0xF & i)))//Pad cyphertext string to the nearest multiple of 16.
string Encrypt(string cleartext)
{
    string cyphertext = "";
    integer i = llStringLength(cleartext);
     if((i += (0x7 & -i)))//Pad cleartext string to the nearest multiple of 8.
     {
     {
         //Step through cleartext string backwords, encrypting it in 64-bit (8 character) blocks.
         do
         do{
         {
            //i=~-i is the same as --i, just a bit faster and lighter on bytecode; requires one less stack manipulation.
            //Pack dword1 with 4 bytes.  Do so by bit-shifting in each character.
            //4th byte winds up in the most-significant position.
            integer dword2 =    (    ord(llGetSubString(cleartext,i=~-i,i))      )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)    ;


             //Do it again, this time for dword1                           
             //Convert hexvalues to dwords contained in LSL integers.
             integer dword1 =   (   ord(llGetSubString(cleartext,i=~-i,i))     )   |
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
                                (   ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
             list clearblock = TEADecrypt((integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))),
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)   |
                                        (integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))), cypherkey);
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)   ;


             //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.
             //Append first 4 characters of ASCII to cleartext string.
 
             //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
             //Convert dword values from cypherblock to hex and append to cyphertext.
             integer t = llList2Integer(clearblock,1);
             cyphertext = TEAEncrypt(dword1,dword2,cypherkey) + cyphertext;
            cleartext += chr( (t      ) & 0xFF) +
                        chr( (t >> 8 ) & 0xFF) +
                        chr( (t >> 16) & 0xFF) +
                        chr( (t = llList2Integer(clearblock,0) >> 24) & 0xFF) +
                        chr( (t      ) & 0xFF) +
                        chr( (t >> 8 ) & 0xFF) +
                        chr( (t >> 16) & 0xFF) +
                        chr( (t >> 24) & 0xFF) ;
         }while(i);
         }while(i);
     }
     }
     return cyphertext;
     return cleartext;      
}
}




//Function: Decrypt
//Function: TEADecrypt
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
//This is the implementation of XTEA proper.  It takes a block of cleartext
string Decrypt(string cyphertext){
//consisting of two dwords contained in LSL integers and a 128-bit key
 
//contained in an LSL list of 4 integers. The function then returns
    //Initialize variables.
//the cyphertext in an LSL list of two integers.
    string cleartext = "";
string TEAEncrypt(integer dword1, integer dword2, list cypherkey_)
    integer i = -llStringLength(cyphertext);
{
 
     if(CYCLES > 0)//$[E20011] /*lslint ignore*/
    //Step through cyphertext string, decrypting it block by block.
     if((i -= (0xF & i)))//Pad cyphertext string to the nearest multiple of 16.
     {
     {
         do
        //Set n to the number of cycles given in the CYCLES global variable
         {
        integer n = CYCLES;
        integer sum = 0;
        //Operate for the specified number of cycles.
         do{
            dword1 = dword1 + ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey_, (sum & 3) ) );
            dword2 = dword2 + ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, ((sum += delta) >> 11 & 3) ) );
         }while (n = ~-n);
    }
    return DWord2Hex(dword1) + DWord2Hex(dword2);
}


            //Convert hexvalues to dwords contained in LSL integers.
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
            list clearblock = TEADecrypt((integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))),
                                        (integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))), cypherkey);


            //Append first 4 characters of ASCII to cleartext string.
//Function: TEADecrypt
            //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
//This is the implementation of XTEA proper.  It takes a block of cyphertext
            integer t = llList2Integer(clearblock,1);
//consisting of two dwords contained in LSL integers and a 128-bit key  
            cleartext += chr( (t      ) & 0xFF) +
                        chr( (t >> 8 ) & 0xFF) +
                        chr( (t >> 16) & 0xFF) +
                        chr( (t = llList2Integer(clearblock,0) >> 24) & 0xFF) +
                        chr( (t      ) & 0xFF) +
                        chr( (t >> 8 ) & 0xFF) +
                        chr( (t >> 16) & 0xFF) +
                        chr( (t >> 24) & 0xFF) ;
        }while(i);
    }
    return cleartext;       
}
 
 
//Function: TEADecrypt
//This is the implementation of XTEA proper.  It takes a block of cleartext
//consisting of two dwords contained in LSL integers and a 128-bit key  
//contained in an LSL list of 4 integers.  The function then returns  
//contained in an LSL list of 4 integers.  The function then returns  
//the cyphertext in an LSL list of two integers.
//the cleartext in an LSL list of two integers.
string TEAEncrypt(integer dword1, integer dword2, list cypherkey_)
list TEADecrypt(integer dword1, integer dword2,list cypherkey_)
{
{
     if(CYCLES > 0)//$[E20011] /*lslint ignore*/
     if(CYCLES > 0)//$[E20011] /*lslint ignore*/
Line 839: Line 814:
         //Set n to the number of cycles given in the CYCLES global variable
         //Set n to the number of cycles given in the CYCLES global variable
         integer n = CYCLES;
         integer n = CYCLES;
        integer sum = 0;
         integer sum = delta * CYCLES;
        //Operate for the specified number of cycles.
         //Operate for the specified number of cycles.         
        do{
            dword1 = dword1 + ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey_, (sum & 3) ) );
            dword2 = dword2 + ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, ((sum += delta) >> 11 & 3) ) );
        }while (n = ~-n);
    }
    return DWord2Hex(dword1) + DWord2Hex(dword2);
}
 
 
//Function: TEADecrypt
//This is the implementation of XTEA proper.  It takes a block of cyphertext
//consisting of two dwords contained in LSL integers and a 128-bit key
//contained in an LSL list of 4 integers.  The function then returns
//the cleartext in an LSL list of two integers.
list TEADecrypt(integer dword1, integer dword2,list cypherkey_)
{
    if(CYCLES > 0)//$[E20011] /*lslint ignore*/
    {
        //Set n to the number of cycles given in the CYCLES global variable
        integer n = CYCLES;
         integer sum = delta * CYCLES;
         //Operate for the specified number of cycles.         
         do{
         do{
             dword2 = dword2 - ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, (sum >> 11 & 3) ) );
             dword2 = dword2 - ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, (sum >> 11 & 3) ) );
Line 892: Line 845:
     }
     }
}
}
</lsl>
</source>


== XTEA LSL <-> PHP ==
== XTEA LSL <-> PHP ==
Line 901: Line 854:
LSL - PLACE IN PRIM -- Edit to change URL and tosend text.
LSL - PLACE IN PRIM -- Edit to change URL and tosend text.


<lsl>
<source lang="lsl2">


//************************************************//  
//************************************************//  
Line 924: Line 877:
integer xtea_num_rounds = 6;  
integer xtea_num_rounds = 6;  
list    xtea_key        = [0, 0, 0, 0];  
list    xtea_key        = [0, 0, 0, 0];  
integer hex2int(string hex) {
    if(llGetSubString(hex,0,1) == "0x")
        return (integer)hex;
    if(llGetSubString(hex,0,0) == "x")
        return (integer)("0"+hex);
    return(integer)("0x"+hex);
}




// Convers any string to a 32 char MD5 string and then to a list of
// Converts any string to a 32 char MD5 string and then to a list of
// 4 * 32 bit integers = 128 bit Key. MD5 ensures always a specific
// 4 * 32 bit integers = 128 bit Key. MD5 ensures always a specific
// 128 bit key is generated for any string passed.
// 128 bit key is generated for any string passed.
Line 940: Line 885:
{  
{  
     str = llMD5String(str,0); // Use Nonce = 0
     str = llMD5String(str,0); // Use Nonce = 0
     return [    hex2int(llGetSubString(  str,  0,  7)),  
     return [    hexdec(llGetSubString(  str,  0,  7)),  
                 hex2int(llGetSubString(  str,  8,  15)),  
                 hexdec(llGetSubString(  str,  8,  15)),  
                 hex2int(llGetSubString(  str,  16,  23)),  
                 hexdec(llGetSubString(  str,  16,  23)),  
                 hex2int(llGetSubString(  str,  24,  31))];  
                 hexdec(llGetSubString(  str,  24,  31))];  
}  
}  


Line 959: Line 904:
         v1  += (((v0 << 4) ^ ((v0 >> 5) & 0x07FFFFFF)) + v0) ^ (sum + llList2Integer(xtea_key, (sum >> 11) & 3));  
         v1  += (((v0 << 4) ^ ((v0 >> 5) & 0x07FFFFFF)) + v0) ^ (sum + llList2Integer(xtea_key, (sum >> 11) & 3));  


     } while( num_rounds = ~-num_rounds );  
     } while( --num_rounds );  
     //return only first 6 chars to remove "=="'s and compact encrypted text.
     //return only first 6 chars to remove "=="'s and compact encrypted text.
     return llGetSubString(llIntegerToBase64(v0),0,5) +
     return llGetSubString(llIntegerToBase64(v0),0,5) +
Line 977: Line 922:
         sum -= XTEA_DELTA;
         sum -= XTEA_DELTA;
         v0  -= (((v1 << 4) ^ ((v1 >> 5) & 0x07FFFFFF)) + v1) ^ (sum + llList2Integer(xtea_key, sum  & 3));  
         v0  -= (((v1 << 4) ^ ((v1 >> 5) & 0x07FFFFFF)) + v1) ^ (sum + llList2Integer(xtea_key, sum  & 3));  
     } while ( num_rounds = ~-num_rounds );  
     } while ( --num_rounds );  


     return llGetSubString(llIntegerToBase64(v0), 0, 4) +  
     return llGetSubString(llIntegerToBase64(v0), 0, 4) +  
Line 1,072: Line 1,017:
}
}


</lsl>
</source>


PHP Code - Place on web server at location that LSL URL will be looking for.
PHP Code - Place on web server at location that LSL URL will be looking for.


<pre>
<source lang="php">
//************************************************//
//************************************************//
//* Sleight's PHP XTEA encryption/decryption v3  *//
//* Sleight's PHP XTEA encryption/decryption v3  *//
Line 1,091: Line 1,036:
// This was converted from the LSL version by
// This was converted from the LSL version by
// SleightOf Hand to allow Strong encryption
// SleightOf Hand to allow Strong encryption
// between LSL and PHP. If you find this usefull
// between LSL and PHP. If you find this useful
// any donations apreciated.
// any donations appreciated.
//************************************************//
//************************************************//
//* XTEA IMPLEMENTATION                          *//
//* XTEA IMPLEMENTATION                          *//
Line 1,140: Line 1,085:
}
}


// Convers any string to a 32 char MD5 string and then to a list of
// Converts any string to a 32 char MD5 string and then to a list of
// 4 * 32 bit integers = 128 bit Key.
// 4 * 32 bit integers = 128 bit Key.
function xtea_key_from_string( $str ) {
function xtea_key_from_string( $str ) {
  global $_xtea_key;
  global $_xtea_key;
  $str = md5($str . ":0"); // Use nonce = 0 in LSL for same output
  $str = md5($str . ":0"); // Use nonce = 0 in LSL for same output
  eval("\$_xtea_key[0] = 0x" . substr($str,0,8) . ";");
  $_xtea_key[0] = hexdec(substr($str,0,8));
  eval("\$_xtea_key[1] = 0x" . substr($str,8,8) . ";");
  $_xtea_key[1] = hexdec(substr($str,8,8));
  eval("\$_xtea_key[2] = 0x" . substr($str,16,8) . ";");
  $_xtea_key[2] = hexdec(substr($str,16,8));
  eval("\$_xtea_key[3] = 0x" . substr($str,24,8) . ";");
  $_xtea_key[3] = hexdec(substr($str,24,8));
}
}


Line 1,158: Line 1,103:
  $sum = 0;
  $sum = 0;
  do {
  do {
   // LSL only has 32 bit integers. However PHP automaticly changes
   // LSL only has 32 bit integers. However PHP automatically changes
   // 32 bit integers to 64 bit floats as nessesary. This causes
   // 32 bit integers to 64 bit floats as necessary. This causes
   // incompatibilities between the LSL Encryption and the PHP
   // incompatibilities between the LSL Encryption and the PHP
   // counterpart. I got round this by changing all addition to
   // counterpart. I got round this by changing all addition to
Line 1,207: Line 1,152:
   $tda = ($tda << 1) & 0x0FFFFFFFF;
   $tda = ($tda << 1) & 0x0FFFFFFFF;
  }while($num_rounds);
  }while($num_rounds);
  $num_rounds = $_xtea_num_rounds; // reset $num_rounds back to its propper setting;
  $num_rounds = $_xtea_num_rounds; // reset $num_rounds back to its proper setting;


  do {
  do {
   // LSL only has 32 bit integers. However PHP automaticly changes
   // LSL only has 32 bit integers. However PHP automatically changes
   // 32 bit integers to 64 bit floats as nessesary. This causes
   // 32 bit integers to 64 bit floats as necessary. This causes
   // incompatibilities between the LSL Encryption and the PHP
   // incompatibilities between the LSL Encryption and the PHP
   // counterpart. I got round this by changing all addition to
   // counterpart. I got round this by changing all addition to
Line 1,218: Line 1,163:
   // I mask out any carry over 32 bits. this bring the output of the
   // I mask out any carry over 32 bits. this bring the output of the
   // decrypt routine to conform with the output of its LSL counterpart.
   // decrypt routine to conform with the output of its LSL counterpart.
   // Subtrations are handled by using 2's compliment
   // Subtractions are handled by using 2's compliment


   // LSL does not have unsigned integers, so when shifting right we
   // LSL does not have unsigned integers, so when shifting right we
Line 1,303: Line 1,248:


  // Replace multiple trailing zeroes with a single one
  // Replace multiple trailing zeroes with a single one
$result = rtrim($result, "A");
  $i = strlen($result);
  $i = strlen($result);
while ( substr($result, --$i, 1) == "A" );
  $mod = $i%4; //Depending on encoded length different appends are needed
$result = substr($result, 0, $i+1);
$i = strlen($result);
  $mod = $i%4; //Depending on encoded length diffrent appends are needed
  if($mod == 1) $result .= "A==";
  if($mod == 1) $result .= "A==";
  else if($mod == 2 ) $result .= "==";
  else if($mod == 2 ) $result .= "==";
Line 1,340: Line 1,283:


echo xtea_encrypt_string($ownerName . " just said " . $parameter1) . "\n";
echo xtea_encrypt_string($ownerName . " just said " . $parameter1) . "\n";
</pre>
</source>


This should result in the following output.
This should result in the following output.


Object whispers: Message to Send = this is a message to send
Object whispers: Message to Send = this is a message to send<br/>
Object whispers: Message to Server = JSdgCA0FDyhgLlUnSgqMQWkAxz1AzA1vr9zwSEDnCgwJ6GNQ
Object whispers: Message to Server = JSdgCA0FDyhgLlUnSgqMQWkAxz1AzA1vr9zwSEDnCgwJ6GNQ<br />
Object whispers: Web server sent: SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw
Object whispers: Web server sent: SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw<br />
Object whispers: Cleaned : SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw
Object whispers: Cleaned : SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw<br />
Object whispers: Web server said: SleightOf Hand just said this is a message to send
Object whispers: Web server said: SleightOf Hand just said this is a message to send


= Test Vectors =
PHP 5 class of XTEA
These are test vectors to verify that the implementation is working correctly. Although the LSL implementation is for six rounds only, it can easily be changed to verify that the implementation is working as expected. Having a proper implementation allows other systems to communicate using the LSL implementation of XTEA.


==Bouncy Castle C# API==
<source lang="php">
These test vectors are taken from [http://www.bouncycastle.org/csharp/ The Bouncy Castle C# API].
<?php
// http://wiki.secondlife.com/wiki/XTEA_Strong_Encryption_Implementation
//************************************************//
//* Sleight's PHP XTEA encryption/decryption v3  *//
//* Modified by SleightOf Hand for Stability and *//
//* intercommunication between PHP & LSL        *//
//************************************************//
// NOTE: This version only encodes 60 bits per 64-bit block!
// This code is public domain.
// Sleight was here 20070522
// masa was here 20070315
// so was strife 20070315
// so was adz 20080812
// gave this some class 20080201 JB Kraft
//
// This was converted from the LSL version by
// SleightOf Hand to allow Strong encryption
// between LSL and PHP. If you find this usefull
// any donations apreciated.
//************************************************//
//* XTEA IMPLEMENTATION                          *//
//************************************************//


{|{{Prettytable}}
/**
|-{{Hl2}}
* PHP 5 class to do XTEA crypting
! Rounds
*
! Data
* $xtea = new XTEA( "mypassword" );
! Key
* $crypted = $xtea->encrypt( "Some bogus string" );
! Vector
* echo "Encrypted: " . bin2hex($crypted);
|-
* echo "Decrypted: " . $xtea->decrypt( $crypted );
| 32
*
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
* @package whatevah
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
* @author JB Kraft
| {{LSL Hex|0xDEE9D4D8|}} {{LSL Hex|0xF7131ED9|}}
**/
class XTEA
{
 
  private $_XTEA_DELTA      = 0x9E3779B9; // (sqrt(5) - 1) * 2^31
  private $_xtea_num_rounds = 6;
  private $_xtea_key        = array(0, 0, 0, 0);
  private $_base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 
 
  /**
  * CTOR
  *
  * @param  $passwd the password to use for crypting
  * @author JB Kraft
  **/
  public function __construct( $passwd )
  {
    $this->xtea_key_from_string( $passwd );   
  }
 
  /**
  * Encrypt a full string using XTEA.
  *
  * @param $str the string to encrypt
  * @return the encrypted string
  * @author JB Kraft
  **/
  public function encrypt( $str )
  {
  // encode Binany string to Base64
  $str = base64_encode($str);
 
  // remove trailing =s so we can do our own 0 padding
  $i = strpos($str, '=', 0);
  if ( $i !== FALSE  ){
    $str = substr( $str, 0, $i);
  }
  // we don't want to process padding, so get length before adding it
  $len = strlen($str);
  // zero pad
  $str .= "AAAAAAAAAA=";
  $result = "";
  $i = 0;
 
  do {
    // encipher 30 (5*6) bits at a time.
    $enc1 = $this->base64_integer(substr($str , $i , 5) . "A==");
    $i += 5;
    $enc2 = $this->base64_integer(substr($str , $i , 5) . "A==");
    $i += 5;
    $result .= $this->xtea_encipher($enc1, $enc2);
  } while ( $i < $len );
  return $result; //Return Encrypted string
  }
 
  /**
  * Decrypt a full string using XTEA
  *
  * @param $str the string to decrypt
  * @return the decrypted string
  * @author JB Kraft
  **/
  public function decrypt( $str )
  {
  $len = strlen($str);
  $i = 0;
  $result = '';
  do {
    $dec1 = $this->base64_integer(substr($str , $i , 6)."==");
    $i += 6;
    $dec2 = $this->base64_integer(substr($str , $i , 6)."==");
    $i += 6;
    $result .= $this->xtea_decipher( $dec1, $dec2);
  } while ( $i < $len );
 
  // Replace multiple trailing zeroes with a single one
  $i = strlen($result);
  while ( substr($result, --$i, 1) == "A" );
  $result = substr($result, 0, $i+1);
  $i = strlen($result);
  $mod = $i%4; //Depending on encoded length diffrent appends are needed
  if($mod == 1) $result .= "A==";
  else if($mod == 2 ) $result .= "==";
  else if($mod == 3) $result .= "=";
 
  return base64_decode( $result );
  }
 
  // -----------------------------
  // stuff below here is protected
  // -----------------------------
 
  // Returns Integer based on 8 byte Base64 Code XXXXXX== (llBase64ToInteger)
  protected function base64_integer($str)
  {
  if(strlen($str) != 8) return 0;
  return ((strpos($this->_base64,$str{0}) << 26)|
  (strpos($this->_base64,$str{1}) << 20)|
  (strpos($this->_base64,$str{2}) << 14)|
  (strpos($this->_base64,$str{3}) << 8) |
  (strpos($this->_base64,$str{4}) << 2) |
  (strpos($this->_base64,$str{5}) >> 4));
  }
 
  // Returns 8 Byte Base64 code based on 32 bit integer ((llIntegerToBase64)
  protected function integer_base64($int)
  {
  if($int != (integer) $int) return 0;
  return  $this->_base64{($int >> 26 & 0x3F)} .
  $this->_base64{($int >> 20 & 0x3F)} .
  $this->_base64{($int >> 14 & 0x3F)} .
  $this->_base64{($int >> 8 & 0x3F)}  .
  $this->_base64{($int >> 2 & 0x3F)}  .
  $this->_base64{($int << 4 & 0x3F)} . "==";
  }
 
  //strict 32 bit addition using logic
  protected function binadd($val1 , $val2)
  {
  $tc = $val1 & $val2;
  $ta = $val1 ^ $val2;
  do{
    $tac = ($tc << 1) & 0x0FFFFFFFF;
    $tc = $ta & $tac;
    $ta = $ta ^ $tac;
  }while($tc);
  return $ta; // $ta will now be the result so return it
  }
 
  // Convers any string to a 32 char MD5 string and then to a list of
  // 4 * 32 bit integers = 128 bit Key.
  protected function xtea_key_from_string( $str )
  {
  $str = md5($str . ":0"); // Use nonce = 0 in LSL for same output
  $this->_xtea_key[0] = hexdec(substr($str,0,8));
  $this->_xtea_key[1] = hexdec(substr($str,8,8));
  $this->_xtea_key[2] = hexdec(substr($str,16,8));
  $this->_xtea_key[3] = hexdec(substr($str,24,8));
  }
 
  // Encipher two integers and return the result as a 12-byte string
  // containing two base64-encoded integers.
  protected function xtea_encipher( $v0 , $v1 )
  {
  $num_rounds = $this->_xtea_num_rounds;
  $sum = 0;
  do {
    // LSL only has 32 bit integers. However PHP automatically changes
    // 32 bit integers to 64 bit floats as necessary. This causes
    // incompatibilities between the LSL Encryption and the PHP
    // counterpart. I got round this by changing all addition to
    // binary addition using logical & and ^ and loops to handle bit
    // carries. This forces the 32 bit integer to remain 32 bits as
    // I mask out any carry over 32 bits. this bring the output of the
    // encrypt routine to conform with the output of its LSL counterpart.
 
    // LSL does not have unsigned integers, so when shifting right we
    // have to mask out sign-extension bits.
 
    // calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    $v0a = $this->binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
    // calculate ($sum + $this->_xtea_key[$sum & 3])
    $v0b = $this->binadd($sum , $this->_xtea_key[$sum & 3]);
    // Calculate ($v0 + ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    //            ^ ($sum + $this->_xtea_key[$sum & 3]))
    $v0 = $this->binadd($v0 , ($v0a  ^ $v0b));
 
    //Calculate ($sum + $this->_XTEA_DELTA)
    $sum = $this->binadd($sum , $this->_XTEA_DELTA);
 
    //Calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    $v1a = $this->binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF))  , $v0);
    // Calculate ($sum + $this->_xtea_key[($sum >>11) & 3])
    $v1b = $this->binadd($sum , $this->_xtea_key[($sum >>11) & 3]);
    //Calculate ($v1 + ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0
    //          ^ ($sum & $this->_xtea_key[($sum >>11) & 3]))
    $v1 = $this->binadd($v1 , ($v1a  ^ $v1b));
  } while( $num_rounds = ~-$num_rounds );
  //return only first 6 chars to remove "=="'s and compact encrypted text.
  return substr($this->integer_base64($v0),0,6) . substr($this->integer_base64($v1),0,6);
  }
 
  // Decipher two base64-encoded integers and return the FIRST 30 BITS of
  // each as one 10-byte base64-encoded string.
  protected function xtea_decipher( $v0, $v1 )
  {
  $num_rounds = $this->_xtea_num_rounds;
  $sum = 0; // $this->_XTEA_DELTA * $this->_xtea_num_rounds;
  $tda = $this->_XTEA_DELTA;
  do{ // Binary multiplication using binary manipulation
    if($num_rounds & 1){
    $sum = $this->binadd($sum , $tda);
    }
    $num_rounds = $num_rounds >> 1;
    $tda = ($tda << 1) & 0x0FFFFFFFF;
  }while($num_rounds);
  $num_rounds = $this->_xtea_num_rounds; // reset $num_rounds back to its propper setting;
 
  do {
    // LSL only has 32 bit integers. However PHP automatically changes
    // 32 bit integers to 64 bit floats as necessary. This causes
    // incompatibilities between the LSL Encryption and the PHP
    // counterpart. I got round this by changing all addition to
    // binary addition using logical & and ^ and loops to handle bit
    // carries. This forces the 32 bit integer to remain 32 bits as
    // I mask out any carry over 32 bits. this bring the output of the
    // decrypt routine to conform with the output of its LSL counterpart.
    // Subtractions are handled by using 2's compliment
 
    // LSL does not have unsigned integers, so when shifting right we
    // have to mask out sign-extension bits.
 
    // calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    $v1a = $this->binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) , $v0);
    // calculate ($sum + $this->_xtea_key[($sum>>11) & 3])
    $v1b = $this->binadd($sum , $this->_xtea_key[($sum>>11) & 3]);
    //Calculate 2's compliment of ($v1a ^ $v1b) for subtraction
    $v1c = $this->binadd((~($v1a ^ $v1b)) , 1);
    //Calculate ($v1 - ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    //            ^ ($sum + $this->_xtea_key[($sum>>11) & 3]))
    $v1 = $this->binadd($v1 , $v1c);
 
    // Calculate new $sum based on $num_rounds - 1
    $tnr = $num_rounds - 1;  // Temp $num_rounds
    $sum = 0; // $this->_XTEA_DELTA * ($num_rounds - 1);
    $tda = $this->_XTEA_DELTA;
    do{ // Binary multiplication using binary manipulation
    if($tnr & 1){
      $sum = $this->binadd($sum , $tda);
    }
    $tnr = $tnr >> 1;
    $tda = ($tda << 1) & 0x0FFFFFFFF;
    }while($tnr);
 
    //Calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    $v0a = $this->binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
    //Calculate ($sum + $this->_xtea_key[$sum & 3])
    $v0b = $this->binadd($sum , $this->_xtea_key[$sum & 3]);
    //Calculate 2's compliment of ($v0a ^ $v0b) for subtraction
    $v0c = $this->binadd((~($v0a ^ $v0b)) , 1);
    //Calculate ($v0 - ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1
    //          ^ ($sum + $this->_xtea_key[$sum & 3]))
    $v0 = $this->binadd($v0 , $v0c);
  } while ( $num_rounds = ~-$num_rounds );
 
  return substr($this->integer_base64($v0), 0, 5) . substr($this->integer_base64($v1), 0, 5);
  }
 
}
 
?>
</source>
 
= Test Vectors =
These are test vectors to verify that the implementation is working correctly. Although the LSL implementation is for six rounds only, it can easily be changed to verify that the implementation is working as expected. Having a proper implementation allows other systems to communicate using the LSL implementation of XTEA.
 
==Bouncy Castle C# API==
These test vectors are taken from [http://www.bouncycastle.org/csharp/ The Bouncy Castle C# API].
 
{|{{Prettytable}}
|-{{Hl2}}
! Rounds
! Data
! Key
! Vector
|-
| 32
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0xDEE9D4D8|}} {{LSL Hex|0xF7131ED9|}}


|-
|-
| 32
| 32
| {{LSL Hex|0x01020304|}} {{LSL Hex|0x05060708|}}
| {{LSL Hex|0x01020304|}} {{LSL Hex|0x05060708|}}
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0x065C1B89|}} {{LSL Hex|0x75C6A816|}}
| {{LSL Hex|0x065C1B89|}} {{LSL Hex|0x75C6A816|}}
|-
|-
| 32
| 32
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
| {{LSL Hex|0x01234567|}} {{LSL Hex|0x12345678|}} {{LSL Hex|0x23456789|}} {{LSL Hex|0x3456789A|}}
| {{LSL Hex|0x01234567|}} {{LSL Hex|0x12345678|}} {{LSL Hex|0x23456789|}} {{LSL Hex|0x3456789A|}}
| {{LSL Hex|0x1FF9A026|}} {{LSL Hex|0x1AC64264|}}
| {{LSL Hex|0x1FF9A026|}} {{LSL Hex|0x1AC64264|}}
|-
|-
| 32
| 32
| {{LSL Hex|0x01020304|}} {{LSL Hex|0x05060708|}}
| {{LSL Hex|0x01020304|}} {{LSL Hex|0x05060708|}}
| {{LSL Hex|0x01234567|}} {{LSL Hex|0x12345678|}} {{LSL Hex|0x23456789|}} {{LSL Hex|0x3456789A|}}
| {{LSL Hex|0x01234567|}} {{LSL Hex|0x12345678|}} {{LSL Hex|0x23456789|}} {{LSL Hex|0x3456789A|}}
| {{LSL Hex|0x8C67155B|}} {{LSL Hex|0x2EF91EAD|}}
| {{LSL Hex|0x8C67155B|}} {{LSL Hex|0x2EF91EAD|}}
|}
 
==Test Vectors for TEA and XTEA==
These test vectors used are from [http://www.cix.co.uk/~klockstone/teavect.htm Test Vectors for TEA and XTEA].
They are made by starting with a vector of 6 zeroes, data followed by key, and coding with one cycle then moving the six cyclically so that n becomes n-1 modulo 6.
 
{|{{Prettytable}}
|-{{Hl2}}
! Round
!colspan="6"|vector
|-
| 1
||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x9E3779B9|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}
|-
| 2
||{{LSL Hex|0xEC01A1DE|}}||{{LSL Hex|0xAAA0256D|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}
|-
| 4
||{{LSL Hex|0xBC3A7DE2|}}||{{LSL Hex|0x4E238EB9|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0x00000000|}}||{{LSL Hex|0xEC01A1DE|}}||{{LSL Hex|0x114F6D74|}}
|-
| 8
||{{LSL Hex|0x31C5FA6C|}}||{{LSL Hex|0x241756D6|}}||{{LSL Hex|0xBC3A7DE2|}}||{{LSL Hex|0x845846CF|}}||{{LSL Hex|0x2794A127|}}||{{LSL Hex|0x6B8EA8B8|}}
|-
| 16
||{{LSL Hex|0x1D8E6992|}}||{{LSL Hex|0x9A478905|}}||{{LSL Hex|0x6A1D78C8|}}||{{LSL Hex|0x08C86D67|}}||{{LSL Hex|0x2A65BFBE|}}||{{LSL Hex|0xB4BD6E46|}}
|-
| 32
||{{LSL Hex|0xD26428AF|}}||{{LSL Hex|0x0A202283|}}||{{LSL Hex|0x27F917B1|}}||{{LSL Hex|0xC1DA8993|}}||{{LSL Hex|0x60E2ACAA|}}||{{LSL Hex|0xA6EB923D|}}
|-
| 64
||{{LSL Hex|0x7A01CBC9|}}||{{LSL Hex|0xB03D6068|}}||{{LSL Hex|0x62EE209F|}}||{{LSL Hex|0x069B7AFC|}}||{{LSL Hex|0x376A8936|}}||{{LSL Hex|0xCDC9E923|}}
|}
|}


==Test Vectors for TEA and XTEA==
These test vectors used are from [http://www.cix.co.uk/~klockstone/teavect.htm Test Vectors for TEA and XTEA].
They are made by starting with a vector of 6 zeroes, data followed by key, and coding with one cycle then moving the six cyclically so that n becomes n-1 modulo 6.
{|{{Prettytable}}
|-{{Hl2}}
! Round
! vector
|-
| 1
| {{LSL Hex|0x00000000|}} {{LSL Hex|0x9E3779B9|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
|-
| 2
| {{LSL Hex|0xEC01A1DE|}} {{LSL Hex|0xAAA0256D|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}}
|-
| 4
| {{LSL Hex|0xBC3A7DE2|}} {{LSL Hex|0x4E238EB9|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0x00000000|}} {{LSL Hex|0xEC01A1DE|}} {{LSL Hex|0x114F6D74|}}
|-
| 8
| {{LSL Hex|0x31C5FA6C|}} {{LSL Hex|0x241756D6|}} {{LSL Hex|0xBC3A7DE2|}} {{LSL Hex|0x845846CF|}} {{LSL Hex|0x2794A127|}} {{LSL Hex|0x6B8EA8B8|}}
|-
| 16
| {{LSL Hex|0x1D8E6992|}} {{LSL Hex|0x9A478905|}} {{LSL Hex|0x6A1D78C8|}} {{LSL Hex|0x08C86D67|}} {{LSL Hex|0x2A65BFBE|}} {{LSL Hex|0xB4BD6E46|}}
|-
| 32
| {{LSL Hex|0xD26428AF|}} {{LSL Hex|0x0A202283|}} {{LSL Hex|0x27F917B1|}} {{LSL Hex|0xC1DA8993|}} {{LSL Hex|0x60E2ACAA|}} {{LSL Hex|0xA6EB923D|}}
|-
| 64
| {{LSL Hex|0x7A01CBC9|}} {{LSL Hex|0xB03D6068|}} {{LSL Hex|0x62EE209F|}} {{LSL Hex|0x069B7AFC|}} {{LSL Hex|0x376A8936|}} {{LSL Hex|0xCDC9E923|}}
|}
==LSL Test==
==LSL Test==
The following code has been imported to LSL to test the vectors with an XTEA implementation. It also makes use of a modified version of the [[Hex]] method on this wiki to display the data. Right Shift of signed integers is handed by techniques introduced in the [[Right_Shift]] method on this wiki.
The following code has been imported to LSL to test the vectors with an XTEA implementation. It also makes use of a modified version of the [[Hex]] method on this wiki to display the data. Right Shift of signed integers is handed by techniques introduced in the [[Right_Shift]] method on this wiki.


<lsl>
<source lang="lsl2">
// XTEA is a version of slightly improved TEA
// XTEA is a version of slightly improved TEA
// The plain or cypher text is in v[0], v[1]
// The plain or cypher text is in v[0], v[1]
Line 1,430: Line 1,664:
     integer z = llList2Integer(v, 1);
     integer z = llList2Integer(v, 1);
     integer DELTA = 0x9E3779B9;
     integer DELTA = 0x9E3779B9;
     integer limit;
     integer limit = DELTA * N;
     integer sum;
     integer sum = 0;
      
      
     if(N > 0) // encrypt
     if(N > 0) // encrypt
     {
     {
        limit = DELTA * N;
        sum = 0;
         while(sum != limit)
         while(sum != limit)
         {
         {
             y  += (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
             y  += (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
             sum += DELTA;
             sum += DELTA;
             z  += (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, ((sum >> 11) & 0x001FFFFF) & 3);
             z  += (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, (sum >> 11) & 3);
         }
         }
     }
     }
     else // decrypt
     else // decrypt
     {
     {
        sum = DELTA * (-N);
        for(sum = -limit; sum; )
 
         {  z  -= (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, (sum >> 11) & 3);
        while (sum)
         {  z  -= (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, ((sum >> 11) & 0x001FFFFF) & 3);
             sum -= DELTA;
             sum -= DELTA;
             y  -= (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
             y  -= (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
Line 1,512: Line 1,742:
     }
     }
}
}
</lsl>
</source>




{{#vardefine:sort|XTEA Strong Encryption Implementation}}{{LSLC|Library}}{{LSLC|Examples}}
{{#vardefine:sort|XTEA Strong Encryption Implementation}}{{LSLC|Library}}{{LSLC|Examples}}
  [[Category: LSL Encryption]]
  [[Category:LSL Encryption]]

Latest revision as of 17:20, 24 January 2015

XTEA Strong Encryption Implementation - Linden Scripting Language (LSL) Version 1.0

Contributors

License

This work is licensed under a Creative Commons Attribution 3.0 Unported License

You are free:

  • to Share — to copy, distribute and transmit the work
  • to Remix — to adapt the work

Under the following conditions

  • Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
  1. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.
  2. Any of the above conditions can be waived if you get permission from the copyright holder.
  3. Nothing in this license impairs or restricts the author's moral rights.

Disclaimer

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

IF YOU READ ONE THING IN HERE, READ THIS

It is VERY important to remember that there is no such thing as cookbook cryptography! Simply using this cypher does not guarantee security. Security is an end-to-end concern and responsibility lies with you to thoroughly examine your project from all possible angles if valuable data is at risk. If you doubt this, ask any thief how they'd rather break into your house - futzing about with picking a high-security deadbolt on the front door or walking in through the back door that you left open.

Documentation

Included at the end of this source listing is a small bit of example code that shows the usage. If you wish to include this implementation in your own work, just replace the example code with your own. Also, please do not reuse or redistribute this work without including the above text attributing this code to its author Morse Dillon, the above GPL statement, and this documentation.

This is an implementation of the XTEA (eXtended Tiny Encryption Algorithm) block cypher. (X)TEA is a very good choice of cipher when security is important but computational power is limited. Although I did a lot of work on this implementation, enormous amounts of credit must be given to the creators of the algorithm and those who came before me to implement it in other languages and computing environments.

If you do decide to use this code in a project, I'd appreciate hearing about it. You can reach me by e-mail at: morseATmorsedillon.com

About TEA

The Tiny Encryption Algorithm (TEA), was originally designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory. The algorithm itself is not subject to any patents. While the original TEA was found to have some minor weaknesses, the eXtended Tiny Encryption Algorithm (XTEA) implemented herein addresses these.

NOTE: XTEA has been superseded by Corrected Block TEA (XXTEA)

TEA and its derivatives consist of 64-bit block Feistel network with a 128-bit key. This implementation uses six cycles, or rounds, which is less than one would like but still provides a reasonable level of security (16 is sufficient while 8 is enough for most applications). Six is said to achieve theoretically good dispersion, but should more security be desired the number of cycles can easily be modified by changing the CYCLES global variable. Due to the low execution speed of LSL scripts, it's suggested to make this as low as your comfort level allows. Encryption time scales linearly with the number of cycles.

About this implementation

This is a bare bones implementation, and is meant to be included in the body of the script needing encryption facilities or wrapped in a link message handler. If the latter approach is desired, care should be taken to only send link messages to the prim containing this implementation. If ALL_PRIMS is used as the destination, one could link a link message listener to the object and intercept clear-text communications.

If you plan to place this code into the same script as that needing encryption facilities, you need only call the following functions:

string Encrypt(string clearText)
string Decrypt(string cypherText)

Simple as that.

This implementation does not provide any secure key exchange, so in terms of key generation and exchange you're on your own.

The 128-bit key is contained in four LSL integers: KEY1, KEY2, KEY3, and KEY4. These are global variables at the beginning of the source and can be set using a method that works for you.

Changes

Version 1.1

  • Changed to treat Right Shift as if integers were unsigned

Version 1.0a - Alpha

  • General optimization to run faster and use less bytecode.
  • Encrypt: Pad works differently, no longer extra characters appended to the output.
  • TEAEncrypt: Changed the return type
  • ord: Added null support.

Version 1.0

  • Initial Release

Future Recommendations

  • Support UTF-8
  • Output to Base64 instead of Hex strings
  • Append hash to the message to verify integrity of data
  • Hash clear-text passwords into 128 bit keys
  • Upgrade to XXTEA

Code

Original

 
//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
//Version 1.0
//Copyright (C) 2007 by Morse Dillon (morseATmorsedillon.com)
//
//This program is free software; you can redistribute it and/or
//modify it under the terms of the GNU General Public License
//as published by the Free Software Foundation; either version 2
//of the License, or (at your option) any later version.
//
//This program is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with this program; if not, write to the Free Software
//Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
//02110-1301, USA.
//========================================================================
//
//Included at the end of this source listing is a small bit of example 
//code that shows the usage.  If you wish to include this implementation 
//in your own work, just replace the example code with your own.  Also, 
//please do not reuse or redistribute this work without including the 
//above text attributing this code to its author Morse Dillon, the above
//GPL statement, and this documentation.
//
//This is an implentation of the XTEA (eXtended Tiny Encryption Algorithm) 
//block cypher.  (X)TEA is a very good choice of cipher when security
//is important but computational power is limited.  Although I did a
//lot of work on this implementation, enormous amounts of credit must
//be given to the creators of the algorithm and those who came before
//me to implement it in other languages and computing environments.
//
//***If you do decide to use this code in a project, I'd appreciate 
//hearing about it.  You can reach me by e-mail at:  
//morseATmorsedillon.com
//
//
//ABOUT TEA AND XTEA
//------------------
//TEA was originally designed by David Wheeler and Roger Needham 
//of the Cambridge Computer Laboratory.  The algorithm itself is not
//subject to any patents.  While the original TEA was found to have
//some minor weaknesses, XTEA (implemented herein) addresses these.  
//
//TEA and its derivatives consist of 64-bit block Feistel network 
//with a 128-bit key.  This implementation uses six cycles, or rounds,
//which is less than one would like but still provides a reasonable
//level of security (16 is sufficient while 8 is enough for most 
//applications).  Six is said to achieve theoretically good dispersion, 
//but should more security be desired the number of cycles can easily be 
//modified by changing the CYCLES global variable.  Due to the low 
//execution speed of LSL scripts, it's suggested to make this as low as 
//your comfort level allows.  Encryption time scales linearly with the 
//number of cycles.
//
//For more information about XTEA, see the following:
//
//Original Paper by Walker and Needham
//http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html
//
//Wikipedia on TEA
//http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
//
//
//ABOUT THIS IMPLEMENTATION
//-------------------------
//This is a barebones implementation, and is meant to be included in
//the body of the script needing encryption facilities or wrapped
//in a link message handler.  If the latter approach is desired, care
//should be taken to only send link messages to the prim containing
//this implementation.  If ALL_PRIMS is used as the destination,
//one could link a link message listener to the object and intercept
//cleartext communications.  
//
//If you plan to place this code into the same script as that needing
//encryption facilities, you need only call the following functions:
//
//string Encrypt(string cleartext)
//string Decrypt(string cyphertext)
//
//Simple as that.
//
//This implementation does not provide any secure key exchange, so in
//terms of key generation and exchange you're on your own.
//
//The 128-bit key is contained in four LSL integers:  KEY1, KEY2, KEY3,
//and KEY4.  These are global variables at the beginning of the source
//and can be set using a method that works for you.
//
//
//**************IF YOU READ ONE THING IN HERE, READ THIS*******************
//It is VERY important to remember that there is no such thing as
//'cookbook cryptography'!  Simply using this cypher does not guarantee
//security.  Security is an end-to-end concern and responsibility lies
//with you to thoroughly examine your project from all possible angles
//if valuable data is at risk.  If you doubt this, ask any thief how they'd
//rather break into your house - futzing about with picking a high-security
//deadbolt on the front door or walking in through the back door that you 
//left open.

//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************

//ENCRYPTION KEYS KEY[1-4]
//These together make up the 128-bit XTEA encryption key.  See the above 
//documentation for details.  Whatever you do, don't leave them as the default.
integer KEY1 = 11111111;
integer KEY2 = 22222222;
integer KEY3 = 33333333;
integer KEY4 = 44444444;

//DEBUG_FLAG
//If set to 1, will cause debug text to be printed containing some 
//intermediate cleartext/cyphertext and the resultant cyphertext/cleartext.  
//Do not leave this enabled in production environments!!!!
integer DEBUG_FLAG = 0;

//COMM_CHANNEL
//Specifies which channel should be used for debug and test harness communication.
integer COMM_CHANNEL = 0;

//CYCLES
//Specifies the number of rounds to be used.  See the above documentation for
//details.
integer CYCLES = 6;

//******************USER-CONFIGURABLE GLOBALS END HERE*********************

//Other Globals
list cypherkey = [];
integer delta = 0x9E3779B9;



//Function: ord
//Returns the index of an ASCII character
integer ord(string chr)
{
    string ASCII = "             \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
    if(llStringLength(chr) != 1) return -1;
    if(chr == " ") return 32;
    return llSubStringIndex(ASCII, chr);
}



//Function: chr
//Returns the ASCII character correspondent to index i
string chr(integer i)
{
    string ASCII = "             \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
    i %= 127;
    return llGetSubString(ASCII, i, i);
}

   
                     
//Function:  DWord2Hex
//Converts a dword containted in a LSL integer to hexadecimal format.        
string DWord2Hex(integer m){
    
    string result;
    integer i = 0;
    integer index = 0;
    
    //Define character string [0-F] for use in building the hex.
    string characters = "0123456789ABCDEF";   
    
    //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
    for (i = 0; i < 8; i++){
        //Get a nibble by right-shifting and masking off 4 bits.
        index  = (m >> (i * 4)) & 0xF;
        //Grab character from the characters string at index position and add it to the result string.
        result = llInsertString(result, 0, llGetSubString(characters,index,index));
    }
    
    return result;
}



//Function:  Hex2DWword
//Converts a string containing a hexadecimal number to a dword contained in a LSL integer.
integer Hex2DWord(string m){
    integer result = 0;
    integer i = 0;
    string digit;
    integer value;
    integer index;
    
    string characters = "0123456789ABCDEF";
    
    for (i = 0; i < 8; i++){
        
        index = 8 - (i + 1);
        digit = llGetSubString(m,index,index);
        
        value = llSubStringIndex(characters, digit);
                        
        result = result | value << (i * 4);
        
    }
    
    return result;
}



//Function: Encrypt
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
string Encrypt(string cleartext){
        
        //Initialize variables.
        integer dword1 = 0;
        integer dword2 = 0;
        integer cyphertext_numeric;
        list cypherblock;
        string cyphertext = "";

        //Pad cleartext string to the nearest multiple of 8.
        while(llStringLength(cleartext) & 0x7) {
            cleartext += " ";
        }
        
        //Define more variables pertaining to while loop.
        integer stringlength = llStringLength(cleartext); 
        integer i=0;
        integer character;
        
        //Step through cleartext string, encrypting it in 64-bit (8 character) blocks.
        while (i < stringlength){
            
            //Pack dword1 with 4 bytes.  Do so by bit-shifting in each character.
            //4th byte winds up in the most-significant position.
            dword1 =  ord(llGetSubString(cleartext,i,i));
            i++;
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 8);
            i++;
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 16);
            i++;
            dword1 =  dword1 | (ord(llGetSubString(cleartext,i,i)) << 24);
            i++;
            
            //Do it again, this time for dword2                            
            dword2 =  ord(llGetSubString(cleartext,i,i));
            i++;
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 8;
            i++;
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 16;
            i++;
            dword2 =  dword2 | ord(llGetSubString(cleartext,i,i)) << 24;
            i++;

            //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.
            cypherblock = TEAEncrypt(dword1,dword2,cypherkey);
 
            //Convert dword values from cypherblock to hex and append to cyphertext.
            cyphertext = cyphertext + DWord2Hex(llList2Integer(cypherblock,0)) + DWord2Hex(llList2Integer(cypherblock,1));
                    
            //Reset variables for the next round, just to be safe.
            dword1 = 0;
            dword2 = 0;
            cypherblock = [];
            
            if(DEBUG_FLAG){
                llOwnerSay("Pre-Crypt DWords: " + (string)dword1 + "," + (string)dword2);
                llOwnerSay("Post-Crypt DWords: " + (string)llList2Integer(cypherblock,1) + "," + (string)llList2Integer(cypherblock,2));    
                llOwnerSay("Post-Crypt Hex: " + DWord2Hex(llList2Integer(cypherblock,1)) + "," + DWord2Hex(llList2Integer(cypherblock,2)));
            }
            
        }  
        
        return cyphertext;        
}  



//Function: Decrypt
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
string Decrypt(string cyphertext){
        
        //Initialize variables.
        string hexvalue1 = "";
        string hexvalue2 = "";
        integer dword1 = 0;
        integer dword2 = 0;
        list clearblock = []; //res
        string cleartext = "";
        integer i;
        
        
        //Step through cyphertext string, descrypting it block by block.
        while (i < llStringLength(cyphertext)){
            
            //Pull first 32 bits worth of hexadecimal into hexvalue1
            hexvalue1 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;
            
            //Pull second 32 bits worth of hexadecimal into hexvalue2
            hexvalue2 += llGetSubString(cyphertext,i,i + 7);
            i = i + 8;

            //Convert hexvalues to dwords contained in LSL integers.
            dword1 = Hex2DWord(hexvalue1);
            dword2 = Hex2DWord(hexvalue2); 
    
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
            clearblock = TEADecrypt(dword1, dword2, cypherkey);
            
            //Append first 4 characters of ASCII to cleartext string.
            //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
            cleartext += chr( llList2Integer(clearblock,0) & 0x000000FF);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,0) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,0) & 0xFF000000)  >> 24);

            //Append second 4 characters of ASCII to cleartext string.
            cleartext += chr( llList2Integer(clearblock,1) & 0x000000FF);
            cleartext += chr( (llList2Integer(clearblock,1) & 0x0000FF00)  >> 8);
            cleartext += chr( (llList2Integer(clearblock,1) & 0x00FF0000)  >> 16);
            cleartext += chr( (llList2Integer(clearblock,1) & 0xFF000000)  >> 24);

            //Reset variables for the next two blocks of decrypt.            
            hexvalue1 = "";
            hexvalue2 = "";
            dword1 = 0;
            dword2 = 0;
            clearblock = [];
            
            if(DEBUG_FLAG){
                llOwnerSay("Pre-Decrypt Hex: " + hexvalue1 + "," + hexvalue2);
                llOwnerSay("Pre-Decrypt DWords: " + (string)dword1 + "," + (string)dword2);
                llOwnerSay("Post-Decrypt DWords: " + (string)llList2Integer(clearblock,1) + "," + (string)llList2Integer(clearblock,2));
            }
             
        }
                
        return cleartext;        
}



//Function: TEAEncrypt
//This is the implementation of XTEA proper.  It takes a block of cleartext
//consisting of two dwords contained in LSL integers and a 128-bit key 
//contained in an LSL list of 4 integers.  The function then returns 
//the cyphertext in an LSL list of two integers.
list TEAEncrypt(integer dword1, integer dword2,list cypherkey){
    
            list cryptlist = [];
            
            //Set n to the number of cycles given in the CYCLES global variable
            integer n = CYCLES;
                        
            integer sum = 0;
            
            //Operate for the specified number of cycles.
            while (n-- > 0){
                dword1 = dword1 + ( ( dword2 << 4 ^ ((dword2 >> 5) & 0x07FFFFFF) ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );
                sum += delta;
                dword2 = dword2 + ( ( dword1 << 4 ^ ((dword1 >> 5) & 0x07FFFFFF) ) + dword1 ^ sum + llList2Integer(cypherkey, ((sum >> 11) & 3) ) );
            }
            
            cryptlist = [dword1,dword2];

            return cryptlist;
}



//Function: TEADecrypt
//This is the implementation of XTEA proper.  It takes a block of cyphertext
//consisting of two dwords contained in LSL integers and a 128-bit key 
//contained in an LSL list of 4 integers.  The function then returns 
//the cleartext in an LSL list of two integers.
list TEADecrypt(integer dword1, integer dword2,list cypherkey){
    
            list cryptlist = [];
            
            //Set n to the number of cycles given in the CYCLES global variable
            integer n = CYCLES;
                        
            integer sum = delta * CYCLES;

            //Operate for the specified number of cycles.        
            while (n-- > 0){
                dword2 = dword2 - ( ( dword1 << 4 ^ ((dword1 >> 5) & 0x07FFFFFF) ) + dword1 ^ sum + llList2Integer(cypherkey, ((sum >> 11) & 3) ) );
                sum -= delta;
                dword1 = dword1 - ( ( dword2 << 4 ^ ((dword2 >> 5) & 0x07FFFFFF) ) + dword2 ^ sum + llList2Integer(cypherkey, (sum & 3) ) );        
            }
            
            cryptlist = [dword1,dword2];
            return cryptlist;
}

Usage Example

Listens on COMM_CHANNEL for a message and encrypts it, then turns around and decrypts the resultant cypher-text. Object than says the encrypted and decrypted messages to the owner.

default
{
    state_entry()
    {
        llListen(COMM_CHANNEL, "", NULL_KEY, "");
        cypherkey = [KEY1,KEY2,KEY3,KEY4];
    }

    listen(integer channel, string name, key id, string message)
    {
        string temp_cyphertext = Encrypt(message);
        
        string temp_cleartext = Decrypt(temp_cyphertext);
        
        llOwnerSay("\nOriginal Cleartext: " + message + "\nCyphertext: " + temp_cyphertext + "\nDecrypted Cleartext: " + temp_cleartext);
    }
}

Optimized

This version is untested but if it works should run faster (and be able to handle larger strings).

// Include the documentation comments from above (separated here only for easier management)

//XTEA Strong Encryption Implementation - Linden Scripting Language (LSL)
//Version 1.0a Alpha
//Copyright (C) 2007 by Strife Onizuka (blindwandererATgmail.com)
//
//Version 1.0
//Copyright (C) 2007 by Morse Dillon (morseATmorsedillon.com)
//
//This program is free software; you can redistribute it and/or
//modify it under the terms of the GNU General Public License
//as published by the Free Software Foundation; either version 2
//of the License, or (at your option) any later version.
//
//This program is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with this program; if not, write to the Free Software
//Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
//02110-1301, USA.
//========================================================================
//
//Included at the end of this source listing is a small bit of example 
//code that shows the usage.  If you wish to include this implementation 
//in your own work, just replace the example code with your own.  Also, 
//please do not reuse or redistribute this work without including the 
//above text attributing this code to its author Morse Dillon, the above
//GPL statement, and this documentation.
//
//This is an implentation of the XTEA (eXtended Tiny Encryption Algorithm) 
//block cypher.  (X)TEA is a very good choice of cipher when security
//is important but computational power is limited.  Although I did a
//lot of work on this implementation, enormous amounts of credit must
//be given to the creators of the algorithm and those who came before
//me to implement it in other languages and computing environments.
//
//***If you do decide to use this code in a project, I'd appreciate 
//hearing about it.  You can reach me by e-mail at:  
//morseATmorsedillon.com
//
//
//ABOUT TEA AND XTEA
//------------------
//TEA was originally designed by David Wheeler and Roger Needham 
//of the Cambridge Computer Laboratory.  The algorithm itself is not
//subject to any patents.  While the original TEA was found to have
//some minor weaknesses, XTEA (implemented herein) addresses these.  
//
//TEA and its derivatives consist of 64-bit block Feistel network 
//with a 128-bit key.  This implementation uses six cycles, or rounds,
//which is less than one would like but still provides a reasonable
//level of security (16 is sufficient while 8 is enough for most 
//applications).  Six is said to achieve theoretically good dispersion, 
//but should more security be desired the number of cycles can easily be 
//modified by changing the CYCLES global variable.  Due to the low 
//execution speed of LSL scripts, it's suggested to make this as low as 
//your comfort level allows.  Encryption time scales linearly with the 
//number of cycles.
//
//For more information about XTEA, see the following:
//
//Original Paper by Walker and Needham
//http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html
//
//Wikipedia on TEA
//http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
//
//
//ABOUT THIS IMPLEMENTATION
//-------------------------
//This is a barebones implementation, and is meant to be included in
//the body of the script needing encryption facilities or wrapped
//in a link message handler.  If the latter approach is desired, care
//should be taken to only send link messages to the prim containing
//this implementation.  If ALL_PRIMS is used as the destination,
//one could link a link message listener to the object and intercept
//cleartext communications.  
//
//If you plan to place this code into the same script as that needing
//encryption facilities, you need only call the following functions:
//
//string Encrypt(string cleartext)
//string Decrypt(string cyphertext)
//
//Simple as that.
//
//This implementation does not provide any secure key exchange, so in
//terms of key generation and exchange you're on your own.
//
//The 128-bit key is contained in four LSL integers:  KEY1, KEY2, KEY3,
//and KEY4.  These are global variables at the beginning of the source
//and can be set using a method that works for you.
//
//
//CHANGES
//-------
//
//1.0a - Alpha
//*General optimization to run faster and use less bytecode.
//*Encrypt: Pad works differently, no longer extra characters appended to the output.
//*TEAEncrypt: Changed the return type
//*ord: Added null support.
//
//1.0
//*Initial Release
//
//
//FUTURE CHANGES
//--------------
//
//It would be nice if it supported UTF-8; but adding that would be alot
//of work. The main issue is the decoding, the bytes would have to be
//reassembled into characters. It would be time consuming. Another possibility
//would be to implement XTEA to output to BASE64 instead of hex strings (also
//time consuming to implement).
//
//
//**************IF YOU READ ONE THING IN HERE, READ THIS*******************
//It is VERY important to remember that there is no such thing as
//'cookbook cryptography'!  Simply using this cypher does not guarantee
//security.  Security is an end-to-end concern and responsibility lies
//with you to thoroughly examine your project from all possible angles
//if valuable data is at risk.  If you doubt this, ask any thief how they'd
//rather break into your house - futzing about with picking a high-security
//deadbolt on the front door or walking in through the back door that you 
//left open.

//******************USER-CONFIGURABLE GLOBALS BEGIN HERE*******************

//ENCRYPTION KEYS KEY[1-4]
//These together make up the 128-bit XTEA encryption key.  See the above 
//documentation for details.  Whatever you do, don't leave them as the default.
//Don't be stupid and make it obvious like your av's key.
integer KEY1 = 11111111;
integer KEY2 = 22222222;
integer KEY3 = 33333333;
integer KEY4 = 44444444;

//COMM_CHANNEL
//Specifies which channel should be used for debug and test harness communication.
integer COMM_CHANNEL = 0;

//CYCLES
//Specifies the number of rounds to be used.  See the above documentation for
//details.
integer CYCLES = 6;

//******************USER-CONFIGURABLE GLOBALS END HERE*********************

//Other Globals
list cypherkey = [];
integer delta = 0x9E3779B9;

string ASCII = "             \n                    !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~";
string characters = "0123456789ABCDEF";

//Function: ord
//Returns the index of an ASCII character
integer ord(string chr)
{
    if(chr)
    {
        if(llStringLength(chr) > 1) return -1;
        if(chr == " ") return 32;
        return llSubStringIndex(ASCII, chr);
    }
    return 0;
}

//Function: chr
//Returns the ASCII character correspondent to index i
string chr(integer i)
{
    if(i)
        return llGetSubString(ASCII, i %= 127, i);
    return "";
}

//Function:  DWord2Hex
//Converts a dword contained in a LSL integer to hexadecimal format.        
string DWord2Hex(integer m)
{
    string result;
    integer i = 0;

    //Define character string [0-F] for use in building the hex.
    //Step through 8 times, for a total of 32 bits, 8 nibbles, and 8 hexadecimal digits.
    do{
        integer index = (m >> i) & 0xF;
        result = llGetSubString(characters, index, index) + result;
    }while((i += 4) < 32);
    return result;
}

//Function: Encrypt
//Takes cleartext string, pads and bitpacks it, then encrypts it using TEAEncrypt().
string Encrypt(string cleartext)
{
    string cyphertext = "";
    integer i = llStringLength(cleartext);
    if((i += (0x7 & -i)))//Pad cleartext string to the nearest multiple of 8.
    {
        //Step through cleartext string backwords, encrypting it in 64-bit (8 character) blocks.
        do{
            //i=~-i is the same as --i, just a bit faster and lighter on bytecode; requires one less stack manipulation.
            //Pack dword1 with 4 bytes.  Do so by bit-shifting in each character.
            //4th byte winds up in the most-significant position.
            integer dword2 =    (    ord(llGetSubString(cleartext,i=~-i,i))      )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)    ;

            //Do it again, this time for dword1                            
            integer dword1 =    (    ord(llGetSubString(cleartext,i=~-i,i))      )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 8 )    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 16)    |
                                (    ord(llGetSubString(cleartext,i=~-i,i)) << 24)    ;

            //Call TEAencrypt() with dword1, dword2, and the cypher key and store result in cypherblock.

            //Convert dword values from cypherblock to hex and append to cyphertext.
            cyphertext = TEAEncrypt(dword1,dword2,cypherkey) + cyphertext;
        }while(i);
    }
    return cyphertext;
}  


//Function: Decrypt
//Takes cyphertext, decrypts it with TEADecrypt(), and unpacks it into a string.
string Decrypt(string cyphertext){

    //Initialize variables.
    string cleartext = "";
    integer i = -llStringLength(cyphertext);

    //Step through cyphertext string, decrypting it block by block.
    if((i -= (0xF & i)))//Pad cyphertext string to the nearest multiple of 16.
    {
        do
        {

            //Convert hexvalues to dwords contained in LSL integers.
            //Call TEADecrypt() with dword1, dword2, and the cypher key and store result in clearblock list.
            list clearblock = TEADecrypt((integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))), 
                                         (integer)("0x"+llGetSubString(cyphertext,i, ~-(i -= 8))), cypherkey);

            //Append first 4 characters of ASCII to cleartext string.
            //This is done by pulling the decrypted dwords from the clearblock list and looking up their ASCII values.
            integer t = llList2Integer(clearblock,1);
            cleartext += chr( (t      ) & 0xFF) +
                         chr( (t >> 8 ) & 0xFF) +
                         chr( (t >> 16) & 0xFF) +
                         chr( (t = llList2Integer(clearblock,0) >> 24) & 0xFF) +
                         chr( (t      ) & 0xFF) +
                         chr( (t >> 8 ) & 0xFF) +
                         chr( (t >> 16) & 0xFF) +
                         chr( (t >> 24) & 0xFF) ;
        }while(i);
    }
    return cleartext;        
}


//Function: TEADecrypt
//This is the implementation of XTEA proper.  It takes a block of cleartext
//consisting of two dwords contained in LSL integers and a 128-bit key 
//contained in an LSL list of 4 integers.  The function then returns 
//the cyphertext in an LSL list of two integers.
string TEAEncrypt(integer dword1, integer dword2, list cypherkey_)
{
    if(CYCLES > 0)//$[E20011] /*lslint ignore*/
    {
        //Set n to the number of cycles given in the CYCLES global variable
        integer n = CYCLES;
        integer sum = 0;
        //Operate for the specified number of cycles.
        do{
            dword1 = dword1 + ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey_, (sum & 3) ) );
            dword2 = dword2 + ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, ((sum += delta) >> 11 & 3) ) );
        }while (n = ~-n);
    }
    return DWord2Hex(dword1) + DWord2Hex(dword2);
}


//Function: TEADecrypt
//This is the implementation of XTEA proper.  It takes a block of cyphertext
//consisting of two dwords contained in LSL integers and a 128-bit key 
//contained in an LSL list of 4 integers.  The function then returns 
//the cleartext in an LSL list of two integers.
list TEADecrypt(integer dword1, integer dword2,list cypherkey_)
{
    if(CYCLES > 0)//$[E20011] /*lslint ignore*/
    {
        //Set n to the number of cycles given in the CYCLES global variable
        integer n = CYCLES;
        integer sum = delta * CYCLES;
        //Operate for the specified number of cycles.        
        do{
            dword2 = dword2 - ( ( dword1 << 4 ^ dword1 >> 5 ) + dword1 ^ sum + llList2Integer(cypherkey_, (sum >> 11 & 3) ) );
            dword1 = dword1 - ( ( dword2 << 4 ^ dword2 >> 5 ) + dword2 ^ sum + llList2Integer(cypherkey_, ((sum -= delta) & 3) ) );        
        }while (n = ~-n);
    }
    return [dword1,dword2];
}


//XTEA Usage Example
//Listens on COMM_CHANNEL for a message and encrypts it, then turns around and decrypts the resultant cyphertext.
//Object than says the encrypted and decrypted messages to the owner.
default
{
    state_entry()
    {
        llListen(COMM_CHANNEL, "", NULL_KEY, "");
        cypherkey = [KEY1,KEY2,KEY3,KEY4];
    }

    listen(integer channel, string name, key id, string message)
    {
        string temp_cyphertext = Encrypt(message);

        string temp_cleartext = Decrypt(temp_cyphertext);

        llOwnerSay("\nOriginal Cleartext: " + message + "\nCyphertext: " + temp_cyphertext + "\nDecrypted Cleartext: " + temp_cleartext);
    }
}

XTEA LSL <-> PHP

This is an XTEA implementation that has both LSL and PHP scripts to allow strong encryption not only inside LSL but also between LSL and a PHP serverscript.

For those who want to see this in action with your Web server try these. Be sure that if you edit these that Rounds and Key Phrase are the same in both LSL and PHP versions.

LSL - PLACE IN PRIM -- Edit to change URL and tosend text.

//************************************************// 
//* Masa's XTEA encryption/decryption v3         *// 
//* Modified by SleightOf Hand for Stability and *// 
//* intercommunication with PHP version          *// 
//************************************************// 
// NOTE: This version only encodes 60 bits per 64-bit block! 
// This code is public domain. 
// Sleight was here 20070522 
// masa was here 20070315 
// so was strife 20070315 
// so was adz 20070812
//
// This was Modified by SleightOf Hand to allow
// Strong encryption between LSL and PHP. 
//************************************************// 
//* XTEA IMPLEMENTATION                          *// 
//************************************************// 

integer XTEA_DELTA      = 0x9E3779B9; // (sqrt(5) - 1) * 2^31 
integer xtea_num_rounds = 6; 
list    xtea_key        = [0, 0, 0, 0]; 


// Converts any string to a 32 char MD5 string and then to a list of
// 4 * 32 bit integers = 128 bit Key. MD5 ensures always a specific
// 128 bit key is generated for any string passed.
list xtea_key_from_string( string str )
{ 
    str = llMD5String(str,0); // Use Nonce = 0
    return [    hexdec(llGetSubString(  str,  0,  7)), 
                hexdec(llGetSubString(  str,  8,  15)), 
                hexdec(llGetSubString(  str,  16,  23)), 
                hexdec(llGetSubString(  str,  24,  31))]; 
} 

// Encipher two integers and return the result as a 12-byte string 
// containing two base64-encoded integers. 
string xtea_encipher( integer v0, integer v1 )
{ 
    integer num_rounds = xtea_num_rounds; 
    integer sum = 0; 
    do { 
        // LSL does not have unsigned integers, so when shifting right we 
        // have to mask out sign-extension bits. 
        v0  += (((v1 << 4) ^ ((v1 >> 5) & 0x07FFFFFF)) + v1) ^ (sum + llList2Integer(xtea_key, sum & 3));
        sum +=  XTEA_DELTA;
        v1  += (((v0 << 4) ^ ((v0 >> 5) & 0x07FFFFFF)) + v0) ^ (sum + llList2Integer(xtea_key, (sum >> 11) & 3)); 

    } while( --num_rounds ); 
    //return only first 6 chars to remove "=="'s and compact encrypted text.
    return llGetSubString(llIntegerToBase64(v0),0,5) +
           llGetSubString(llIntegerToBase64(v1),0,5); 
} 

// Decipher two base64-encoded integers and return the FIRST 30 BITS of 
// each as one 10-byte base64-encoded string. 
string xtea_decipher( integer v0, integer v1 )
{ 
    integer num_rounds = xtea_num_rounds; 
    integer sum = XTEA_DELTA*xtea_num_rounds; 
    do { 
        // LSL does not have unsigned integers, so when shifting right we 
        // have to mask out sign-extension bits. 
        v1  -= (((v0 << 4) ^ ((v0 >> 5) & 0x07FFFFFF)) + v0) ^ (sum + llList2Integer(xtea_key, (sum>>11) & 3)); 
        sum -= XTEA_DELTA;
        v0  -= (((v1 << 4) ^ ((v1 >> 5) & 0x07FFFFFF)) + v1) ^ (sum + llList2Integer(xtea_key, sum  & 3)); 
    } while ( --num_rounds ); 

    return llGetSubString(llIntegerToBase64(v0), 0, 4) + 
           llGetSubString(llIntegerToBase64(v1), 0, 4); 
} 

// Encrypt a full string using XTEA. 
string xtea_encrypt_string( string str )
{ 
    // encode string 
    str = llStringToBase64(str); 
    // remove trailing =s so we can do our own 0 padding 
    integer i = llSubStringIndex( str, "=" ); 
    if ( i != -1 ) 
        str = llDeleteSubString( str, i, -1 ); 

    // we don't want to process padding, so get length before adding it 
    integer len = llStringLength(str); 

    // zero pad 
    str += "AAAAAAAAAA="; 

    string result; 
    i = 0; 

    do { 
        // encipher 30 (5*6) bits at a time. 
        result += xtea_encipher( 
            llBase64ToInteger(llGetSubString(str,   i, i += 4) + "A="), 
            llBase64ToInteger(llGetSubString(str, ++i, i += 4) + "A=") 
        ); 
    } while ( ++i < len ); 

    return result; 
} 

// Decrypt a full string using XTEA 
string xtea_decrypt_string( string str ) { 
    integer len = llStringLength(str); 
    integer i; 
    string result; 
    do { 
        result += xtea_decipher( 
            llBase64ToInteger(llGetSubString(str,   i, i += 5) + "=="), 
            llBase64ToInteger(llGetSubString(str, ++i, i += 5) + "==") 
        ); 
    } while ( ++i < len ); 

    // Replace multiple trailing zeroes with a single one 
    i = llStringLength(result) - 1; 
    while ( llGetSubString(result, --i, i+1) == "AA" ) 
        result = llDeleteSubString(result, i+1, i+1); 
    return llBase64ToString( result + "====" ); 
} 

key requestid; // just to check if we're getting the result we've asked for; all scripts in the same object get the same replies
string base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + 

                          "abcdefghijklmnopqrstuvwxyz" + 

                          "0123456789+/";
string url = "http://<enter your URL here>/test-script.php";



default
{
    touch_start(integer number)
    {
        string tosend = "this is a message to send";
        llWhisper(0, "Message to Send = " + tosend);
        xtea_key = xtea_key_from_string("this is a test key");
        string message = xtea_encrypt_string(tosend);
        llWhisper(0, "Message to Server = " + message);
        requestid = llHTTPRequest(url, 
            [HTTP_METHOD, "POST",
             HTTP_MIMETYPE, "application/x-www-form-urlencoded"],
            "parameter1=" + llEscapeURL(message));
    }

    http_response(key request_id, integer status, list metadata, string body)
    {
        if (request_id == requestid) { 
            llWhisper(0, "Web server sent: " + body);
            integer clean = 0;
            string cleanbody = "";
            while(~llSubStringIndex(base64,llGetSubString(body,clean,clean))){
                cleanbody += llGetSubString(body,clean,clean++);
            }
            llWhisper(0, "Cleaned : " + cleanbody);
            llWhisper(0, "Web server said: " + xtea_decrypt_string( cleanbody ));
        }
    }
}

PHP Code - Place on web server at location that LSL URL will be looking for.

//************************************************//
//* Sleight's PHP XTEA encryption/decryption v3  *//
//* Modified by SleightOf Hand for Stability and *//
//* intercommunication between PHP & LSL         *//
//************************************************//
// NOTE: This version only encodes 60 bits per 64-bit block!
// This code is public domain.
// Sleight was here 20070522
// masa was here 20070315
// so was strife 20070315
// so was adz 20080812
//
// This was converted from the LSL version by
// SleightOf Hand to allow Strong encryption
// between LSL and PHP. If you find this useful
// any donations appreciated.
//************************************************//
//* XTEA IMPLEMENTATION                          *//
//************************************************//

$_XTEA_DELTA      = 0x9E3779B9; // (sqrt(5) - 1) * 2^31
$_xtea_num_rounds = 6;
$_xtea_key        = array(0, 0, 0, 0);
$_base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
           "abcdefghijklmnopqrstuvwxyz".
           "0123456789+/";

// Returns Integer based on 8 byte Base64 Code XXXXXX== (llBase64ToInteger)
function base64_integer($str){
 global $_base64;
 if(strlen($str) != 8) return 0;
 return ((strpos($_base64,$str{0}) << 26)|
 (strpos($_base64,$str{1}) << 20)|
 (strpos($_base64,$str{2}) << 14)|
 (strpos($_base64,$str{3}) << 8) |
 (strpos($_base64,$str{4}) << 2) |
 (strpos($_base64,$str{5}) >> 4));
}

// Returns 8 Byte Base64 code based on 32 bit integer ((llIntegerToBase64)
function integer_base64($int){
 global $_base64;
 if($int != (integer) $int) return 0;
 return  $_base64{($int >> 26 & 0x3F)} .
 $_base64{($int >> 20 & 0x3F)} .
 $_base64{($int >> 14 & 0x3F)} .
 $_base64{($int >> 8 & 0x3F)}  .
 $_base64{($int >> 2 & 0x3F)}  .
 $_base64{($int << 4 & 0x3F)} . "==";
}

//strict 32 bit addition using logic
function binadd($val1 , $val2){
 $tc = $val1 & $val2;
 $ta = $val1 ^ $val2;
 do{
  $tac = ($tc << 1) & 0x0FFFFFFFF;
  $tc = $ta & $tac;
  $ta = $ta ^ $tac;
 }while($tc);
 return $ta; // $ta will now be the result so return it
}

// Converts any string to a 32 char MD5 string and then to a list of
// 4 * 32 bit integers = 128 bit Key.
function xtea_key_from_string( $str ) {
 global $_xtea_key;
 $str = md5($str . ":0"); // Use nonce = 0 in LSL for same output
 $_xtea_key[0] = hexdec(substr($str,0,8));
 $_xtea_key[1] = hexdec(substr($str,8,8));
 $_xtea_key[2] = hexdec(substr($str,16,8));
 $_xtea_key[3] = hexdec(substr($str,24,8));
}

// Encipher two integers and return the result as a 12-byte string
// containing two base64-encoded integers.
function xtea_encipher( $v0 , $v1 ) {
 global  $_xtea_num_rounds , $_xtea_key , $_XTEA_DELTA;
 $num_rounds = $_xtea_num_rounds;
 $sum = 0;
 do {
  // LSL only has 32 bit integers. However PHP automatically changes
  // 32 bit integers to 64 bit floats as necessary. This causes
  // incompatibilities between the LSL Encryption and the PHP
  // counterpart. I got round this by changing all addition to
  // binary addition using logical & and ^ and loops to handle bit
  // carries. This forces the 32 bit integer to remain 32 bits as
  // I mask out any carry over 32 bits. this bring the output of the
  // encrypt routine to conform with the output of its LSL counterpart.

  // LSL does not have unsigned integers, so when shifting right we
  // have to mask out sign-extension bits.

  // calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
  $v0a = binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
  // calculate ($sum + $_xtea_key[$sum & 3])
  $v0b = binadd($sum , $_xtea_key[$sum & 3]);
  // Calculate ($v0 + ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
  //            ^ ($sum + $_xtea_key[$sum & 3]))
  $v0 = binadd($v0 , ($v0a  ^ $v0b));

  //Calculate ($sum + $_XTEA_DELTA)
  $sum = binadd($sum , $_XTEA_DELTA);

  //Calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
  $v1a = binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF))  , $v0);
  // Calculate ($sum + $_xtea_key[($sum >>11) & 3])
  $v1b = binadd($sum , $_xtea_key[($sum >>11) & 3]);
  //Calculate ($v1 + ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0
  //           ^ ($sum & $_xtea_key[($sum >>11) & 3]))
  $v1 = binadd($v1 , ($v1a  ^ $v1b));
 } while( $num_rounds = ~-$num_rounds );
 //return only first 6 chars to remove "=="'s and compact encrypted text.
 return substr(integer_base64($v0),0,6) . substr(integer_base64($v1),0,6);
}

// Decipher two base64-encoded integers and return the FIRST 30 BITS of
// each as one 10-byte base64-encoded string.
function xtea_decipher( $v0, $v1 ) {
 global  $_xtea_num_rounds , $_xtea_key , $_XTEA_DELTA;
 $num_rounds = $_xtea_num_rounds;
 $sum = 0; // $_XTEA_DELTA * $_xtea_num_rounds;
 $tda = $_XTEA_DELTA;
 do{ // Binary multiplication using binary manipulation
  if($num_rounds & 1){
   $sum = binadd($sum , $tda);
  }
  $num_rounds = $num_rounds >> 1;
  $tda = ($tda << 1) & 0x0FFFFFFFF;
 }while($num_rounds);
 $num_rounds = $_xtea_num_rounds; // reset $num_rounds back to its proper setting;

 do {
  // LSL only has 32 bit integers. However PHP automatically changes
  // 32 bit integers to 64 bit floats as necessary. This causes
  // incompatibilities between the LSL Encryption and the PHP
  // counterpart. I got round this by changing all addition to
  // binary addition using logical & and ^ and loops to handle bit
  // carries. This forces the 32 bit integer to remain 32 bits as
  // I mask out any carry over 32 bits. this bring the output of the
  // decrypt routine to conform with the output of its LSL counterpart.
  // Subtractions are handled by using 2's compliment

  // LSL does not have unsigned integers, so when shifting right we
  // have to mask out sign-extension bits.

  // calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
  $v1a = binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) , $v0);
  // calculate ($sum + $_xtea_key[($sum>>11) & 3])
  $v1b = binadd($sum , $_xtea_key[($sum>>11) & 3]);
  //Calculate 2's compliment of ($v1a ^ $v1b) for subtraction
  $v1c = binadd((~($v1a ^ $v1b)) , 1);
  //Calculate ($v1 - ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
  //            ^ ($sum + $_xtea_key[($sum>>11) & 3]))
  $v1 = binadd($v1 , $v1c);

  // Calculate new $sum based on $num_rounds - 1
  $tnr = $num_rounds - 1;  // Temp $num_rounds
  $sum = 0; // $_XTEA_DELTA * ($num_rounds - 1);
  $tda = $_XTEA_DELTA;
  do{ // Binary multiplication using binary manipulation
   if($tnr & 1){
    $sum = binadd($sum , $tda);
   }
   $tnr = $tnr >> 1;
   $tda = ($tda << 1) & 0x0FFFFFFFF;
  }while($tnr);

  //Calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
  $v0a = binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
  //Calculate ($sum + $_xtea_key[$sum & 3])
  $v0b = binadd($sum , $_xtea_key[$sum & 3]);
  //Calculate 2's compliment of ($v0a ^ $v0b) for subtraction
  $v0c = binadd((~($v0a ^ $v0b)) , 1);
  //Calculate ($v0 - ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1
  //           ^ ($sum + $_xtea_key[$sum & 3]))
  $v0 = binadd($v0 , $v0c);
 } while ( $num_rounds = ~-$num_rounds );

 return substr(integer_base64($v0), 0, 5) . substr(integer_base64($v1), 0, 5);
}

// Encrypt a full string using XTEA.
function xtea_encrypt_string( $str ) {
 // encode Binany string to Base64
 $str = base64_encode($str);

 // remove trailing =s so we can do our own 0 padding
 $i = strpos($str, '=', 0);
 if ( $i !== FALSE  ){
  $str = substr( $str, 0, $i);
 }
 // we don't want to process padding, so get length before adding it
 $len = strlen($str);
 // zero pad
 $str .= "AAAAAAAAAA=";
 $result = "";
 $i = 0;

 do {
  // encipher 30 (5*6) bits at a time.
  $enc1 = base64_integer(substr($str , $i , 5) . "A==");
  $i += 5;
  $enc2 = base64_integer(substr($str , $i , 5) . "A==");
  $i += 5;
  $result .= xtea_encipher($enc1, $enc2);
 } while ( $i < $len );
 return $result; //Return Encrypted string
}

// Decrypt a full string using XTEA
function xtea_decrypt_string( $str ) {
 global $_base64 ;

 $len = strlen($str);
 $i;
 $result;
 do {
  $dec1 = base64_integer(substr($str , $i , 6)."==");
  $i += 6;
  $dec2 = base64_integer(substr($str , $i , 6)."==");
  $i += 6;
  $result .= xtea_decipher( $dec1, $dec2);
 } while ( $i < $len );

 // Replace multiple trailing zeroes with a single one
 $result = rtrim($result, "A");
 $i = strlen($result);
 $mod = $i%4; //Depending on encoded length different appends are needed
 if($mod == 1) $result .= "A==";
 else if($mod == 2 ) $result .= "==";
 else if($mod == 3) $result .= "=";

 return base64_decode( $result );
}

// Only works with PHP compiled as an Apache module
$headers = apache_request_headers();

$objectName = $headers["X-SecondLife-Object-Name"];
$objectKey     = $headers["X-SecondLife-Object-Key"];
$ownerKey     = $headers["X-SecondLife-Owner-Key"];
$ownerName = $headers["X-SecondLife-Owner-Name"];
$region        = $headers["X-SecondLife-Region"];
// and so on for getting all the other variables ...

//to pull out this headers in other kinds of installations, use this (Adz)
/*
$objectName    = $_SERVER['HTTP_X_SECONDLIFE_OBJECT_NAME'];
$objectKey     = $_SERVER['HTTP_X_SECONDLIFE_OBJECT_KEY'];
$region        = $_SERVER['HTTP_X_SECONDLIFE_REGION'];
$ownerName     = $_SERVER['HTTP_X_SECONDLIFE_OWNER_NAME'];
$ownerKey      = $_SERVER['HTTP_X_SECONDLIFE_OWNER_KEY'];
*/

xtea_key_from_string("this is a test key");
// get things from $_POST[]
// Naturally enough, if this is empty, you won't get anything
$parameter1 = xtea_decrypt_string($_POST["parameter1"]);

echo xtea_encrypt_string($ownerName . " just said " . $parameter1) . "\n";

This should result in the following output.

Object whispers: Message to Send = this is a message to send
Object whispers: Message to Server = JSdgCA0FDyhgLlUnSgqMQWkAxz1AzA1vr9zwSEDnCgwJ6GNQ
Object whispers: Web server sent: SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw
Object whispers: Cleaned : SVbqNQ5XdkngeUI3bgP+s6eAT6GM4AWnYCYApcfxagrPbxmwiY7WXA4J+gEQ1AYhRQNvcnEwfZSo/AuKVtIw
Object whispers: Web server said: SleightOf Hand just said this is a message to send

PHP 5 class of XTEA

<?php
// http://wiki.secondlife.com/wiki/XTEA_Strong_Encryption_Implementation
//************************************************//
//* Sleight's PHP XTEA encryption/decryption v3  *//
//* Modified by SleightOf Hand for Stability and *//
//* intercommunication between PHP & LSL         *//
//************************************************//
// NOTE: This version only encodes 60 bits per 64-bit block!
// This code is public domain.
// Sleight was here 20070522
// masa was here 20070315
// so was strife 20070315
// so was adz 20080812
// gave this some class 20080201 JB Kraft
//
// This was converted from the LSL version by
// SleightOf Hand to allow Strong encryption
// between LSL and PHP. If you find this usefull
// any donations apreciated.
//************************************************//
//* XTEA IMPLEMENTATION                          *//
//************************************************//

/**
 * PHP 5 class to do XTEA crypting
 *
 * $xtea = new XTEA( "mypassword" );
 * $crypted = $xtea->encrypt( "Some bogus string" );
 * echo "Encrypted: " . bin2hex($crypted);
 * echo "Decrypted: " . $xtea->decrypt( $crypted );
 *
 * @package whatevah
 * @author JB Kraft
 **/
class XTEA
{

  private $_XTEA_DELTA      = 0x9E3779B9; // (sqrt(5) - 1) * 2^31
  private $_xtea_num_rounds = 6;
  private $_xtea_key        = array(0, 0, 0, 0);
  private $_base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";


  /**
   * CTOR
   *
   * @param  $passwd the password to use for crypting
   * @author JB Kraft
   **/
  public function __construct( $passwd )
  {
    $this->xtea_key_from_string( $passwd );    
  }

  /**
   * Encrypt a full string using XTEA.
   *
   * @param $str the string to encrypt
   * @return the encrypted string
   * @author JB Kraft
   **/
  public function encrypt( $str ) 
  {
   // encode Binany string to Base64
   $str = base64_encode($str);

   // remove trailing =s so we can do our own 0 padding
   $i = strpos($str, '=', 0);
   if ( $i !== FALSE  ){
    $str = substr( $str, 0, $i);
   }
   // we don't want to process padding, so get length before adding it
   $len = strlen($str);
   // zero pad
   $str .= "AAAAAAAAAA=";
   $result = "";
   $i = 0;

   do {
    // encipher 30 (5*6) bits at a time.
    $enc1 = $this->base64_integer(substr($str , $i , 5) . "A==");
    $i += 5;
    $enc2 = $this->base64_integer(substr($str , $i , 5) . "A==");
    $i += 5;
    $result .= $this->xtea_encipher($enc1, $enc2);
   } while ( $i < $len );
   return $result; //Return Encrypted string
  }

  /**
   * Decrypt a full string using XTEA
   *
   * @param $str the string to decrypt
   * @return the decrypted string
   * @author JB Kraft
   **/
  public function decrypt( $str ) 
  {
   $len = strlen($str);
   $i = 0;
   $result = '';
   do {
    $dec1 = $this->base64_integer(substr($str , $i , 6)."==");
    $i += 6;
    $dec2 = $this->base64_integer(substr($str , $i , 6)."==");
    $i += 6;
    $result .= $this->xtea_decipher( $dec1, $dec2);
   } while ( $i < $len );

   // Replace multiple trailing zeroes with a single one
   $i = strlen($result);
   while ( substr($result, --$i, 1) == "A" );
   $result = substr($result, 0, $i+1);
   $i = strlen($result);
   $mod = $i%4; //Depending on encoded length diffrent appends are needed
   if($mod == 1) $result .= "A==";
   else if($mod == 2 ) $result .= "==";
   else if($mod == 3) $result .= "=";

   return base64_decode( $result );
  }
  
  // -----------------------------
  // stuff below here is protected
  // -----------------------------

  // Returns Integer based on 8 byte Base64 Code XXXXXX== (llBase64ToInteger)
  protected function base64_integer($str)
  {
   if(strlen($str) != 8) return 0;
   return ((strpos($this->_base64,$str{0}) << 26)|
   (strpos($this->_base64,$str{1}) << 20)|
   (strpos($this->_base64,$str{2}) << 14)|
   (strpos($this->_base64,$str{3}) << 8) |
   (strpos($this->_base64,$str{4}) << 2) |
   (strpos($this->_base64,$str{5}) >> 4));
  }

  // Returns 8 Byte Base64 code based on 32 bit integer ((llIntegerToBase64)
  protected function integer_base64($int)
  {
   if($int != (integer) $int) return 0;
   return  $this->_base64{($int >> 26 & 0x3F)} .
   $this->_base64{($int >> 20 & 0x3F)} .
   $this->_base64{($int >> 14 & 0x3F)} .
   $this->_base64{($int >> 8 & 0x3F)}  .
   $this->_base64{($int >> 2 & 0x3F)}  .
   $this->_base64{($int << 4 & 0x3F)} . "==";
  }

  //strict 32 bit addition using logic
  protected function binadd($val1 , $val2)
  {
   $tc = $val1 & $val2;
   $ta = $val1 ^ $val2;
   do{
    $tac = ($tc << 1) & 0x0FFFFFFFF;
    $tc = $ta & $tac;
    $ta = $ta ^ $tac;
   }while($tc);
   return $ta; // $ta will now be the result so return it
  }

  // Convers any string to a 32 char MD5 string and then to a list of
  // 4 * 32 bit integers = 128 bit Key.
  protected function xtea_key_from_string( $str ) 
  {
   $str = md5($str . ":0"); // Use nonce = 0 in LSL for same output
   $this->_xtea_key[0] = hexdec(substr($str,0,8));
   $this->_xtea_key[1] = hexdec(substr($str,8,8));
   $this->_xtea_key[2] = hexdec(substr($str,16,8));
   $this->_xtea_key[3] = hexdec(substr($str,24,8));
  }

  // Encipher two integers and return the result as a 12-byte string
  // containing two base64-encoded integers.
  protected function xtea_encipher( $v0 , $v1 ) 
  {
   $num_rounds = $this->_xtea_num_rounds;
   $sum = 0;
   do {
    // LSL only has 32 bit integers. However PHP automatically changes
    // 32 bit integers to 64 bit floats as necessary. This causes
    // incompatibilities between the LSL Encryption and the PHP
    // counterpart. I got round this by changing all addition to
    // binary addition using logical & and ^ and loops to handle bit
    // carries. This forces the 32 bit integer to remain 32 bits as
    // I mask out any carry over 32 bits. this bring the output of the
    // encrypt routine to conform with the output of its LSL counterpart.

    // LSL does not have unsigned integers, so when shifting right we
    // have to mask out sign-extension bits.

    // calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    $v0a = $this->binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
    // calculate ($sum + $this->_xtea_key[$sum & 3])
    $v0b = $this->binadd($sum , $this->_xtea_key[$sum & 3]);
    // Calculate ($v0 + ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    //            ^ ($sum + $this->_xtea_key[$sum & 3]))
    $v0 = $this->binadd($v0 , ($v0a  ^ $v0b));

    //Calculate ($sum + $this->_XTEA_DELTA)
    $sum = $this->binadd($sum , $this->_XTEA_DELTA);

    //Calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    $v1a = $this->binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF))  , $v0);
    // Calculate ($sum + $this->_xtea_key[($sum >>11) & 3])
    $v1b = $this->binadd($sum , $this->_xtea_key[($sum >>11) & 3]);
    //Calculate ($v1 + ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0
    //           ^ ($sum & $this->_xtea_key[($sum >>11) & 3]))
    $v1 = $this->binadd($v1 , ($v1a  ^ $v1b));
   } while( $num_rounds = ~-$num_rounds );
   //return only first 6 chars to remove "=="'s and compact encrypted text.
   return substr($this->integer_base64($v0),0,6) . substr($this->integer_base64($v1),0,6);
  }

  // Decipher two base64-encoded integers and return the FIRST 30 BITS of
  // each as one 10-byte base64-encoded string.
  protected function xtea_decipher( $v0, $v1 ) 
  {
   $num_rounds = $this->_xtea_num_rounds;
   $sum = 0; // $this->_XTEA_DELTA * $this->_xtea_num_rounds;
   $tda = $this->_XTEA_DELTA;
   do{ // Binary multiplication using binary manipulation
    if($num_rounds & 1){
     $sum = $this->binadd($sum , $tda);
    }
    $num_rounds = $num_rounds >> 1;
    $tda = ($tda << 1) & 0x0FFFFFFFF;
   }while($num_rounds);
   $num_rounds = $this->_xtea_num_rounds; // reset $num_rounds back to its propper setting;

   do {
    // LSL only has 32 bit integers. However PHP automatically changes
    // 32 bit integers to 64 bit floats as necessary. This causes
    // incompatibilities between the LSL Encryption and the PHP
    // counterpart. I got round this by changing all addition to
    // binary addition using logical & and ^ and loops to handle bit
    // carries. This forces the 32 bit integer to remain 32 bits as
    // I mask out any carry over 32 bits. this bring the output of the
    // decrypt routine to conform with the output of its LSL counterpart.
    // Subtractions are handled by using 2's compliment

    // LSL does not have unsigned integers, so when shifting right we
    // have to mask out sign-extension bits.

    // calculate ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    $v1a = $this->binadd((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) , $v0);
    // calculate ($sum + $this->_xtea_key[($sum>>11) & 3])
    $v1b = $this->binadd($sum , $this->_xtea_key[($sum>>11) & 3]);
    //Calculate 2's compliment of ($v1a ^ $v1b) for subtraction
    $v1c = $this->binadd((~($v1a ^ $v1b)) , 1);
    //Calculate ($v1 - ((($v0 << 4) ^ (($v0 >> 5) & 0x07FFFFFF)) + $v0)
    //            ^ ($sum + $this->_xtea_key[($sum>>11) & 3]))
    $v1 = $this->binadd($v1 , $v1c);

    // Calculate new $sum based on $num_rounds - 1
    $tnr = $num_rounds - 1;  // Temp $num_rounds
    $sum = 0; // $this->_XTEA_DELTA * ($num_rounds - 1);
    $tda = $this->_XTEA_DELTA;
    do{ // Binary multiplication using binary manipulation
     if($tnr & 1){
      $sum = $this->binadd($sum , $tda);
     }
     $tnr = $tnr >> 1;
     $tda = ($tda << 1) & 0x0FFFFFFFF;
    }while($tnr);

    //Calculate ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1)
    $v0a = $this->binadd((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) , $v1);
    //Calculate ($sum + $this->_xtea_key[$sum & 3])
    $v0b = $this->binadd($sum , $this->_xtea_key[$sum & 3]);
    //Calculate 2's compliment of ($v0a ^ $v0b) for subtraction
    $v0c = $this->binadd((~($v0a ^ $v0b)) , 1);
    //Calculate ($v0 - ((($v1 << 4) ^ (($v1 >> 5) & 0x07FFFFFF)) + $v1
    //           ^ ($sum + $this->_xtea_key[$sum & 3]))
    $v0 = $this->binadd($v0 , $v0c);
   } while ( $num_rounds = ~-$num_rounds );

   return substr($this->integer_base64($v0), 0, 5) . substr($this->integer_base64($v1), 0, 5);
  }

}

?>

Test Vectors

These are test vectors to verify that the implementation is working correctly. Although the LSL implementation is for six rounds only, it can easily be changed to verify that the implementation is working as expected. Having a proper implementation allows other systems to communicate using the LSL implementation of XTEA.

Bouncy Castle C# API

These test vectors are taken from The Bouncy Castle C# API.

Rounds Data Key Vector
32 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0xDEE9D4D8 0xF7131ED9
32 0x01020304 0x05060708 0x00000000 0x00000000 0x00000000 0x00000000 0x065C1B89 0x75C6A816
32 0x00000000 0x00000000 0x01234567 0x12345678 0x23456789 0x3456789A 0x1FF9A026 0x1AC64264
32 0x01020304 0x05060708 0x01234567 0x12345678 0x23456789 0x3456789A 0x8C67155B 0x2EF91EAD

Test Vectors for TEA and XTEA

These test vectors used are from Test Vectors for TEA and XTEA. They are made by starting with a vector of 6 zeroes, data followed by key, and coding with one cycle then moving the six cyclically so that n becomes n-1 modulo 6.

Round vector
1 0x00000000 0x9E3779B9 0x00000000 0x00000000 0x00000000 0x00000000
2 0xEC01A1DE 0xAAA0256D 0x00000000 0x00000000 0x00000000 0x00000000
4 0xBC3A7DE2 0x4E238EB9 0x00000000 0x00000000 0xEC01A1DE 0x114F6D74
8 0x31C5FA6C 0x241756D6 0xBC3A7DE2 0x845846CF 0x2794A127 0x6B8EA8B8
16 0x1D8E6992 0x9A478905 0x6A1D78C8 0x08C86D67 0x2A65BFBE 0xB4BD6E46
32 0xD26428AF 0x0A202283 0x27F917B1 0xC1DA8993 0x60E2ACAA 0xA6EB923D
64 0x7A01CBC9 0xB03D6068 0x62EE209F 0x069B7AFC 0x376A8936 0xCDC9E923

LSL Test

The following code has been imported to LSL to test the vectors with an XTEA implementation. It also makes use of a modified version of the Hex method on this wiki to display the data. Right Shift of signed integers is handed by techniques introduced in the Right_Shift method on this wiki.

// XTEA is a version of slightly improved TEA
// The plain or cypher text is in v[0], v[1]
// The key is in k[n], where n = 0 - 3
// The number of coding cycles is given by N and
// the number of decoding cycles is given by -N

list XTEA(list v, list k, integer N) // Replaces TEA's Code and Decode
{
    integer y = llList2Integer(v, 0);
    integer z = llList2Integer(v, 1);
    integer DELTA = 0x9E3779B9;
    integer limit = DELTA * N;
    integer sum = 0;
    
    if(N > 0) // encrypt
    {
        while(sum != limit)
        {
            y   += (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
            sum += DELTA;
            z   += (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, (sum >> 11) & 3);
        }
    }
    else // decrypt
    {
         for(sum = -limit; sum; )
         {   z   -= (y << 4 ^ ((y >> 5) & 0x07FFFFFF)) + y ^ sum + llList2Integer(k, (sum >> 11) & 3);
             sum -= DELTA;
             y   -= (z << 4 ^ ((z >> 5) & 0x07FFFFFF)) + z ^ sum + llList2Integer(k, sum & 3);
         }
    }
    
    return [y,z];
}
string hex(integer value)
{
    string h = "";
    while (value)
    {
        string c = llGetSubString("0123456789ABCDEF", value & 0xF, value & 0xF);
        h = c + h;
        value = (value >> 4) & 0x0FFFFFFF;
    }
    return "0x" + llGetSubString("00000000" + h, -8, -1);
}
default
{
    state_entry()
    {

        // Bouncy Castle C# API Test Vectors
        list v;
        v = XTEA([0x00000000, 0x00000000], [0x00000000, 0x00000000, 0x00000000, 0x00000000], 32);
        llSay(DEBUG_CHANNEL, hex(llList2Integer(v, 0)) + "\t" + hex(llList2Integer(v, 1)) + "\texpected\t0xDEE9D4D8\t0xF7131ED9");
        
        v = XTEA([0x01020304, 0x05060708], [0x00000000, 0x00000000, 0x00000000, 0x00000000], 32);
        llSay(DEBUG_CHANNEL, hex(llList2Integer(v, 0)) + "\t" + hex(llList2Integer(v, 1)) + "\texpected\t0x065C1B89\t0x75C6A816");
        
        v = XTEA([0x00000000, 0x00000000], [0x01234567, 0x12345678, 0x23456789, 0x3456789A], 32);
        llSay(DEBUG_CHANNEL, hex(llList2Integer(v, 0)) + "\t" + hex(llList2Integer(v, 1)) + "\texpected\t0x1FF9A026\t0x1AC64264");
        
        v = XTEA([0x01020304, 0x05060708], [0x01234567, 0x12345678, 0x23456789, 0x3456789A], 32);
        llSay(DEBUG_CHANNEL, hex(llList2Integer(v, 0)) + "\t" + hex(llList2Integer(v, 1)) + "\texpected\t0x8C67155B\t0x2EF91EAD");

        // Test Vectors for XTEA

        list pz = [0,0,0,0,0,0,0];
        integer n;
        for (n = 1; n < 65; n++)
        {  
            
            list a = XTEA(llList2List(pz, n, n + 1), llList2List(pz, n + 2, n + 5), n);
            
            pz = llListReplaceList(pz, a, n, n + 1);

            if (n == (n & -n))                         // if n power of 2
                llSay(DEBUG_CHANNEL, 
                    (string)n 
                    + "\t" + hex(llList2Integer(pz, n + 0)) 
                    + "\t" + hex(llList2Integer(pz, n + 1)) 
                    + "\t" + hex(llList2Integer(pz, n + 2))
                    + "\t" + hex(llList2Integer(pz, n + 3)) 
                    + "\t" + hex(llList2Integer(pz, n + 4))
                    + "\t" + hex(llList2Integer(pz, n + 5))
                );
            pz = llListReplaceList(pz, llList2List(pz, n, n + 5), n + 6, n + 11);
        }
    }
}