Difference between revisions of "LlRotBetween"

From Second Life Wiki
Jump to navigation Jump to search
Line 53: Line 53:
     {
     {
         float ab = (a * b) / aabb; // normalized dotproduct of the arguments (cosine)
         float ab = (a * b) / aabb; // normalized dotproduct of the arguments (cosine)
         vector c;
         vector c = (a % b) / aabb; // normalized crossproduct of the arguments
        c.x = (a.y * b.z - a.z * b.y) / aabb; // normalized crossproduct of the arguments
        c.y = (a.z * b.x - a.x * b.z) / aabb;
        c.z = (a.x * b.y - a.y * b.x) / aabb;
         float cc = c * c; // squared length of the normalized crossproduct (sine)
         float cc = c * c; // squared length of the normalized crossproduct (sine)
         if (cc) // test if the arguments are not (anti)parallel
         if (cc) // test if the arguments are not (anti)parallel

Revision as of 07:38, 5 October 2012

Summary

Function: rotation llRotBetween( vector start, vector end );
0.0 Forced Delay
10.0 Energy

Returns a rotation that is the shortest rotation between the direction start and the direction end

• vector start
• vector end

Specification

start and end are directions and are relative to the origin <0.0, 0.0, 0.0>. If you have coordinates relative to a different origin, subtract that origin from the input vectors.

Caveats

  • start * llRotBetween(start, end) == end is only true if start and end have the same magnitude and neither have a magnitude of zero (see #Useful Snippets for a workaround).
    • This of course is ignoring floating point precision errors.
  • Rotations are from -PI to +PI around each axis.

Examples

<lsl>llRotBetween(<1.0, 0.0, 0.0>, <0.0, -1.0, 0.0>) // will return <0.00000, 0.00000, -0.70711, 0.70711> (which represents -90 degrees on the z axis)

llRotBetween(<0.0, 0.0, 0.0>, <0.0, -1.0, 0.0>) // will return <0.00000, 0.00000, 0.00000, 1.00000> (which represents a zero angle on all axis)

// because <0.0, 0.0, 0.0> does not convey a direction.</lsl>

Useful Snippets

This function adjusts the magnitude of the quaternion so start * llRotBetween(start, end) == end is true as long as neither have a magnitude really close to zero. They do not have to have the same magnitude. (If either is too close to zero than this will return an unadjusted quaternion). While this is mathematically correct, it won't help with floating point rounding errors, so it's more accurate to say start * return ≈ end. <lsl>rotation RotBetween(vector start, vector end) //adjusts quaternion magnitude so (start * return == end) {//Authors note: I have never had a use for this but it's good to know how to do it if I did.

   rotation rot = llRotBetween(start, end);
   float d = start * start;
   if(d)//is 'start' zero?
       if((d = llPow(end * end / d, 0.25)))//is 'end' zero?
           return <rot.x * d, rot.y * d, rot.z * d, rot.s * d>;
   return rot;

}//Strife Onizuka</lsl>

Notes

Vectors that are near opposite each other in direction may lead to erroneous results. <lsl> // First Vector is due north second vector is ALMOST due south. rotation lRotation = llRotBetween( <0., 1., 0.>, <-0.001, -.1, 0.> ); llSay(0, lRotation ); // Provides a result of <1.00000, 0.00000, 0.00000, 0.00000>. </lsl>

See Also

Functions

•  llAngleBetween

Deep Notes

Replacement

Due to the annoying quirks of this function Moon Metty wrote a drop in replacement. - SCR-309. The maximum error is reported to be 2.7e-7 @ 2.2 radians. <lsl>rotation RotBetween(vector a, vector b) {

   float aabb = llSqrt((a * a) * (b * b)); // product of the lengths of the arguments
   if (aabb)
   {
       float ab = (a * b) / aabb; // normalized dotproduct of the arguments (cosine)
       vector c = (a % b) / aabb; // normalized crossproduct of the arguments
       float cc = c * c; // squared length of the normalized crossproduct (sine)
       if (cc) // test if the arguments are not (anti)parallel
       {
           float s;
           if (ab > -0.707107)
               s = 1 + ab; // use the cosine to adjust the s-element
           else 
               s = cc / (1 + llSqrt(1 - cc)); // use the sine to adjust the s-element
           float m = llSqrt(cc + s * s); // the magnitude of the quaternion
           return <c.x / m, c.y / m, c.z / m, s / m>; // return the normalized quaternion
       }
       if (ab > 0) 
           return ZERO_ROTATION; // the arguments are parallel, or anti-parallel if not true:
       float m = llSqrt(a.x * a.x + a.y * a.y); // the length of one argument projected on the XY-plane
       if (m) 
           return <a.y / m, -a.x / m, 0, 0>; // return a rotation with the axis in the XY-plane
       return <1, 0, 0, 0>; // the arguments are parallel to the Z-axis, rotate around the X-axis
   }
   return ZERO_ROTATION; // the arguments are too small, return zero rotation

}//Written by Moon Metty, optimized by Strife Onizuka

// This version keeps the axis in the XY-plane, in case of anti-parallel vectors (unlike the current LL implementation). -- Moon Metty</lsl>

Bad Reference Implementation

<lsl>//Loosely based on SL source code, like SL's version, it's not very accurate. You want to use the above version. rotation llRotBetween(vector start, vector end) {

   vector v1 = llVecNorm(start);
   vector v2 = llVecNorm(end);
   float dot = v1 * v2;
   vector axis = v1 % v2;
   if (dot < -0.9999999) {
       // 180 degrees or there abouts
       vector ortho_axis = llVecNorm(<1.f, 0.f, 0.f> - (sn * (sn.x / (sn * sn))));
       if (ortho_axis)
           return < ortho_axis.x, ortho_axis.y, ortho_axis.z, 0.f>;
       return <0.0, 0.0, 1.0, 0.0>;
   }
   else if(dot > 0.9999999) {
       //parallel
       return ZERO_ROTATION;
   }
   dot = dot + 1.0;
   float m = llPow((axis * axis) + (dot * dot), -0.5);
   return <axis.x * m, axis.y * m, axis.z * m, dot * m>;

}</lsl>

Source

Signature

function rotation llRotBetween( vector start, vector end );