Difference between revisions of "Interpolation"

From Second Life Wiki
Jump to navigation Jump to search
Line 10: Line 10:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Linear
Float Linear
|-
|-
|
|
Line 49: Line 49:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Cosine
Float Cosine
|-
|-
|
|
Line 89: Line 89:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Cubic
Float Cubic
|-
|-
|
|
Line 135: Line 135:
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Hermite
Float Hermite
|-
|-
|
|
Line 191: Line 191:
By Nexii Malthus</div>
By Nexii Malthus</div>
|}
|}
=== Vector Functions ===
<!--############# VECTOR LINEAR #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Vector Linear
|-
|
Linear interpolation of v0 and v1 with fraction t.
<lsl>
vector vLin(vector v0, vector v1,float t){
    return v0*(1-t) + v1*t;}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| vector v0
| Start, 0.0
|-
| vector v1
| End, 1.0
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return vector vLin
| Returns linear interpolation of two vectors
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
<!--############# VECTOR COSINE #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Vector Cosine
|-
|
Cosine interpolation of v0 and v1 with fraction t.
<lsl>
vector vCos(vector v0,vector v1,float t){
    float F = (1 - llCos(t*PI))/2;
    return v0*(1-F)+v1*F;}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| vector v0
| Start, 0.0
|-
| vector v1
| End, 1.0
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return vector vCos
| Returns cosine interpolation of two vectors
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
<!--############# VECTOR CUBIC #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Vector Cubic
|-
|
Cubic interpolation of v0, v1, v2 and v3 with fraction t.
<lsl>
vector vCub(vector v0,vector v1,vector v2,vector v3,float t){
    vector P = (v3-v2)-(v0-v1);vector Q = (v0-v1)-P;vector R = v2-v0;vector S = v1;
    return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| vector v0
| Modifier, 0.33~
|-
| vector v1
| Start, 0.0
|-
| vector v2
| End, 1.0
|-
| vector v3
| Modifier, 0.66~
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return vector vCub
| Returns cubic interpolation of four vectors
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
<!--############# VECTOR HERMITE #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Vector Hermite
|-
|
Hermite interpolation of v0, v1, v2 and v3 with fraction t, tension and bias.
<lsl>
vector vHem(vector v0,vector v1,vector v2,vector v3,float t,float tens,float bias){
    float t2 = t*t;float t3 = t2*t;
    vector a0 =  (v1-v0)*(1+bias)*(1-tens)/2;
          a0 += (v2-v1)*(1-bias)*(1-tens)/2;
    vector a1 =  (v2-v1)*(1+bias)*(1-tens)/2;
          a1 += (v3-v2)*(1-bias)*(1-tens)/2;
    float b0 =  2*t3 - 3*t2 + 1;
    float b1 =    t3 - 2*t2 + t;
    float b2 =    t3 -  t2;
    float b3 = -2*t3 + 3*t2;
    return (  b0  *  v1+b1  *  a0+b2  *  a1+b3  *  v2  );}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| vector v0
| Modifier, 0.33~
|-
| vector v1
| Start, 0.0
|-
| vector v2
| End, 1.0
|-
| vector v3
| Modifier, 0.66~
|-
| float t
| Fraction of interpolation
|-
| float tens
| Tension of interpolation
|-
| float bias
| Bias of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return vector vHem
| Returns hermite interpolation of four vectors with tension and bias
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
=== Rotation Functions ===
<!--############# ROTATION LINEAR #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Rotation Linear
|-
|
Spherical Linear interpolation of r0 and r1 with fraction t.
Also known as '''SLERP'''
<lsl>
rotation rLin(rotation r0,rotation r1,float t){
    // Spherical-Linear Interpolation
    float ang = llAngleBetween(r0, r1);
    if( ang > PI) ang -= TWO_PI;
    return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*t);}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| rotation r0
| Start, 0.0
|-
| rotation r1
| End, 1.0
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return rotation rLin
| Returns spherical linear interpolation of two rotations
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
<!--############# ROTATION COSINE #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Rotation Cosine
|-
|
Spherical Cosine interpolation of r0 and r1 with fraction t.
I liken to call it as '''SCORP'''
<lsl>
rotation rCos(rotation r0,rotation r1,float t){
    // Spherical-Cosine Interpolation
    float f = (1 - llCos(t*PI))/2;
    float ang = llAngleBetween(r0, r1);
    if( ang > PI) ang -= TWO_PI;
    return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*f);}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| rotation r0
| Start, 0.0
|-
| rotation r1
| End, 1.0
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return rotation rCos
| Returns spherical cosine interpolation of two rotations
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}
<!--############# ROTATION CUBIC #############-->
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
!style="color: #000000; background-color: #aaaaff;" height="20px"|
Rotation Cubic
|-
|
Spherical Cubic interpolation of r0 and r1 with fraction t.
I liken to call it as '''SCURP'''
<lsl>
rotation rCub(rotation r0,rotation r1,rotation r2,rotation r3,float t){
    // Spherical-Cubic Interpolation
    // r0 = Start, r1 = End, r2 and r3 affect path of curve!
    return rLin( rLin(r0,r1,t), rLin(r2,r3,t), 2*t*(1-t) );}
</lsl>
{|cellspacing="0" cellpadding="3" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #ffffff; border-collapse: collapse" width="80%"
|
{|cellspacing="0" cellpadding="6" border="1" style="border: 1px solid #aaaaaa; margin: 1em 1em 1em 0pt; background-color: #e0e0ff; border-collapse: collapse"
!style="background-color: #d0d0ee" | Input
!style="background-color: #d0d0ee" | Description
|-
| rotation r0
| Start, 0.0
|-
| rotation r1
| End, 1.0
|-
| rotation r2
| Modifier, 0.33~
|-
| rotation r3
| Modifier, 0.66~
|-
| float t
| Fraction of interpolation
|-
!style="background-color: #d0d0ee" | Output
!style="background-color: #d0d0ee" | Description
|-
| return rotation rCub
| Returns spherical cubic interpolation of four rotations
|-
!style="background-color: #eed0d0" colspan="2"| Requirement
|-
|style="background-color: #eed0d0" colspan="2"| function rotation rLin(rotation r0,rotation r1,float t)
|}
| Graph goes here, k.
|}
<div style="float:right;font-size: 80%;">
By Nexii Malthus</div>
|}


== Old non-documented Library ==
== Old non-documented Library ==

Revision as of 08:21, 5 October 2008

Interpolation Library

Float Functions

Float Linear

Linear interpolation of f0 and f1 with fraction t. <lsl> float fLin(float f0, float f1,float t){

   return f0*(1-t) + f1*t;}

</lsl>

Input Description
float f0 Start, 0.0
float f1 End, 1.0
float t Fraction of interpolation
Output Description
return float fLin Returns linear interpolation of two floats
Graph goes here, k.
By Nexii Malthus

Float Cosine

Cosine interpolation of f0 and f1 with fraction t. <lsl> float fCos(float v0,float v1,float t){

   float F = (1 - llCos(t*PI))/2;
   return v0*(1-F)+v1*F;}

</lsl>

Input Description
float f0 Start, 0.0
float f1 End, 1.0
float t Fraction of interpolation
Output Description
return float fCos Returns cosine interpolation of two floats
Graph goes here, k.
By Nexii Malthus

Float Cubic

Cubic interpolation of f0, f1, f2 and f3 with fraction t. <lsl> float fCub(float f0,float f1,float f2,float f3,float t){

   float P = (f3-f2)-(f0-f1);float Q = (f0-f1)-P;float R = f2-f0;float S = f1;
   return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}

</lsl>

Input Description
float f0 Modifier, 0.33~
float f1 Start, 0.0
float f2 End, 1.0
float f3 Modifier, 0.66~
float t Fraction of interpolation
Output Description
return float fCub Returns cubic interpolation of four floats
Graph goes here, k.
By Nexii Malthus

Float Hermite

Hermite interpolation of f0, f1, f2 and f3 with fraction t, tension and bias. <lsl> float fHem(float f0,float f1,float f2,float f3,float t,float tens,float bias){

   float t2 = t*t;float t3 = t2*t;
   float a0 =  (f1-f0)*(1+bias)*(1-tens)/2;
         a0 += (f2-f1)*(1-bias)*(1-tens)/2;
   float a1 =  (f2-f1)*(1+bias)*(1-tens)/2;
         a1 += (f3-f2)*(1-bias)*(1-tens)/2;
   float b0 =  2*t3 - 3*t2 + 1;
   float b1 =    t3 - 2*t2 + t;
   float b2 =    t3 -   t2;
   float b3 = -2*t3 + 3*t2;
   return (  b0  *  f1+b1  *  a0+b2  *  a1+b3  *  f2  );}

</lsl>

Input Description
float f0 Modifier, 0.33~
float f1 Start, 0.0
float f2 End, 1.0
float f3 Modifier, 0.66~
float t Fraction of interpolation
float tens Tension of interpolation
float bias Bias of interpolation
Output Description
return float fHem Returns hermite interpolation of four floats with tension and bias
Graph goes here, k.
By Nexii Malthus


Vector Functions

Vector Linear

Linear interpolation of v0 and v1 with fraction t. <lsl> vector vLin(vector v0, vector v1,float t){

   return v0*(1-t) + v1*t;}

</lsl>

Input Description
vector v0 Start, 0.0
vector v1 End, 1.0
float t Fraction of interpolation
Output Description
return vector vLin Returns linear interpolation of two vectors
Graph goes here, k.
By Nexii Malthus

Vector Cosine

Cosine interpolation of v0 and v1 with fraction t. <lsl> vector vCos(vector v0,vector v1,float t){

   float F = (1 - llCos(t*PI))/2;
   return v0*(1-F)+v1*F;}

</lsl>

Input Description
vector v0 Start, 0.0
vector v1 End, 1.0
float t Fraction of interpolation
Output Description
return vector vCos Returns cosine interpolation of two vectors
Graph goes here, k.
By Nexii Malthus

Vector Cubic

Cubic interpolation of v0, v1, v2 and v3 with fraction t. <lsl> vector vCub(vector v0,vector v1,vector v2,vector v3,float t){

   vector P = (v3-v2)-(v0-v1);vector Q = (v0-v1)-P;vector R = v2-v0;vector S = v1;
   return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}

</lsl>

Input Description
vector v0 Modifier, 0.33~
vector v1 Start, 0.0
vector v2 End, 1.0
vector v3 Modifier, 0.66~
float t Fraction of interpolation
Output Description
return vector vCub Returns cubic interpolation of four vectors
Graph goes here, k.
By Nexii Malthus

Vector Hermite

Hermite interpolation of v0, v1, v2 and v3 with fraction t, tension and bias. <lsl> vector vHem(vector v0,vector v1,vector v2,vector v3,float t,float tens,float bias){

   float t2 = t*t;float t3 = t2*t;
   vector a0 =  (v1-v0)*(1+bias)*(1-tens)/2;
          a0 += (v2-v1)*(1-bias)*(1-tens)/2;
   vector a1 =  (v2-v1)*(1+bias)*(1-tens)/2;
          a1 += (v3-v2)*(1-bias)*(1-tens)/2;
   float b0 =  2*t3 - 3*t2 + 1;
   float b1 =    t3 - 2*t2 + t;
   float b2 =    t3 -   t2;
   float b3 = -2*t3 + 3*t2;
   return (  b0  *  v1+b1  *  a0+b2  *  a1+b3  *  v2  );}

</lsl>

Input Description
vector v0 Modifier, 0.33~
vector v1 Start, 0.0
vector v2 End, 1.0
vector v3 Modifier, 0.66~
float t Fraction of interpolation
float tens Tension of interpolation
float bias Bias of interpolation
Output Description
return vector vHem Returns hermite interpolation of four vectors with tension and bias
Graph goes here, k.
By Nexii Malthus

Rotation Functions

Rotation Linear

Spherical Linear interpolation of r0 and r1 with fraction t. Also known as SLERP <lsl> rotation rLin(rotation r0,rotation r1,float t){

   // Spherical-Linear Interpolation
   float ang = llAngleBetween(r0, r1);
   if( ang > PI) ang -= TWO_PI;
   return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*t);}

</lsl>

Input Description
rotation r0 Start, 0.0
rotation r1 End, 1.0
float t Fraction of interpolation
Output Description
return rotation rLin Returns spherical linear interpolation of two rotations
Graph goes here, k.
By Nexii Malthus

Rotation Cosine

Spherical Cosine interpolation of r0 and r1 with fraction t. I liken to call it as SCORP <lsl> rotation rCos(rotation r0,rotation r1,float t){

   // Spherical-Cosine Interpolation
   float f = (1 - llCos(t*PI))/2;
   float ang = llAngleBetween(r0, r1);
   if( ang > PI) ang -= TWO_PI;
   return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*f);}

</lsl>

Input Description
rotation r0 Start, 0.0
rotation r1 End, 1.0
float t Fraction of interpolation
Output Description
return rotation rCos Returns spherical cosine interpolation of two rotations
Graph goes here, k.
By Nexii Malthus

Rotation Cubic

Spherical Cubic interpolation of r0 and r1 with fraction t. I liken to call it as SCURP <lsl> rotation rCub(rotation r0,rotation r1,rotation r2,rotation r3,float t){

   // Spherical-Cubic Interpolation
   // r0 = Start, r1 = End, r2 and r3 affect path of curve!
   return rLin( rLin(r0,r1,t), rLin(r2,r3,t), 2*t*(1-t) );}

</lsl>

Input Description
rotation r0 Start, 0.0
rotation r1 End, 1.0
rotation r2 Modifier, 0.33~
rotation r3 Modifier, 0.66~
float t Fraction of interpolation
Output Description
return rotation rCub Returns spherical cubic interpolation of four rotations
Requirement
function rotation rLin(rotation r0,rotation r1,float t)
Graph goes here, k.
By Nexii Malthus


Old non-documented Library

Changes/ 1.0-1.1 - Added rotation types 1.1-1.2 - Added Hermite for float and vector

Example Script

<lsl> //===================================================// // Interpolation Library 1.2 // // "May 12 2008", "6:16:20 GMT-0" // // Copyright (C) 2008, Nexii Malthus (cc-by) // // http://creativecommons.org/licenses/by/3.0/ // //===================================================//

float fLin(float v0, float v1,float t){

   return v0*(1-t) + v1*t;}

float fCos(float v0,float v1,float t){

   float F = (1 - llCos(t*PI))/2;
   return v0*(1-F)+v1*F;}

float fCub(float v0,float v1,float v2,float v3,float t){

   float P = (v3-v2)-(v0-v1);float Q = (v0-v1)-P;float R = v2-v0;float S = v1;
   return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}

float fHem(float v0,float v1,float v2,float v3,float t,float tens,float bias){

   float t2 = t*t;float t3 = t2*t;
   float a0 =  (v1-v0)*(1+bias)*(1-tens)/2;
         a0 += (v2-v1)*(1-bias)*(1-tens)/2;
   float a1 =  (v2-v1)*(1+bias)*(1-tens)/2;
         a1 += (v3-v2)*(1-bias)*(1-tens)/2;
   float b0 =  2*t3 - 3*t2 + 1;
   float b1 =    t3 - 2*t2 + t;
   float b2 =    t3 -   t2;
   float b3 = -2*t3 + 3*t2;
   return (  b0  *  v1+b1  *  a0+b2  *  a1+b3  *  v2  );}

vector vLin(vector v0, vector v1,float t){

   return v0*(1-t) + v1*t;}

vector vCos(vector v0,vector v1,float t){

   float F = (1 - llCos(t*PI))/2;
   return v0*(1-F)+v1*F;}

vector vCub(vector v0,vector v1,vector v2,vector v3,float t){

   vector P = (v3-v2)-(v0-v1);vector Q = (v0-v1)-P;vector R = v2-v0;vector S = v1;
   return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}

vector vHem(vector v0,vector v1,vector v2,vector v3,float t,float tens,float bias){

   float t2 = t*t;float t3 = t2*t;
   vector a0 =  (v1-v0)*(1+bias)*(1-tens)/2;
          a0 += (v2-v1)*(1-bias)*(1-tens)/2;
   vector a1 =  (v2-v1)*(1+bias)*(1-tens)/2;
          a1 += (v3-v2)*(1-bias)*(1-tens)/2;
   float b0 =  2*t3 - 3*t2 + 1;
   float b1 =    t3 - 2*t2 + t;
   float b2 =    t3 -   t2;
   float b3 = -2*t3 + 3*t2;
   return (  b0  *  v1+b1  *  a0+b2  *  a1+b3  *  v2  );}

rotation rLin(rotation r0,rotation r1,float t){

   // Spherical-Linear Interpolation
   float ang = llAngleBetween(r0, r1);
   if( ang > PI) ang -= TWO_PI;
   return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*t);}

rotation rCos(rotation r0,rotation r1,float t){

   // Spherical-Cosine Interpolation
   float f = (1 - llCos(t*PI))/2;
   float ang = llAngleBetween(r0, r1);
   if( ang > PI) ang -= TWO_PI;
   return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*f);}

rotation rCub(rotation r0,rotation r1,rotation r2,rotation r3,float t){

   // Spherical-Cubic Interpolation
   // r0 = Start, r1 = End, r2 and r3 affect path of curve!
   return rLin( rLin(r0,r1,t), rLin(r2,r3,t), 2*t*(1-t) );}

default{state_entry(){}}

</lsl>