Interpolation
LSL Portal | Functions | Events | Types | Operators | Constants | Flow Control | Script Library | Categorized Library | Tutorials |
Interpolation Library
Float Functions
Linear | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Linear interpolation of f0 and f1 with fraction t. <lsl> float fLin(float f0, float f1,float t){ return f0*(1-t) + f1*t;} </lsl>
By Nexii Malthus
|
Cosine | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cosine interpolation of f0 and f1 with fraction t. <lsl> float fCos(float v0,float v1,float t){ float F = (1 - llCos(t*PI))/2; return v0*(1-F)+v1*F;} </lsl>
By Nexii Malthus
|
Cubic | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cubic interpolation of f0, f1, f2 and f3 with fraction t. <lsl> float fCub(float f0,float f1,float f2,float f3,float t){ float P = (f3-f2)-(f0-f1);float Q = (f0-f1)-P;float R = f2-f0;float S = f1; return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;} </lsl>
By Nexii Malthus
|
Hermite | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hermite interpolation of f0, f1, f2 and f3 with fraction t, tension and bias. <lsl> float fHem(float f0,float f1,float f2,float f3,float t,float tens,float bias){ float t2 = t*t;float t3 = t2*t; float a0 = (f1-f0)*(1+bias)*(1-tens)/2; a0 += (f2-f1)*(1-bias)*(1-tens)/2; float a1 = (f2-f1)*(1+bias)*(1-tens)/2; a1 += (f3-f2)*(1-bias)*(1-tens)/2; float b0 = 2*t3 - 3*t2 + 1; float b1 = t3 - 2*t2 + t; float b2 = t3 - t2; float b3 = -2*t3 + 3*t2; return ( b0 * f1+b1 * a0+b2 * a1+b3 * f2 );} </lsl>
By Nexii Malthus
|
Old non-documented Library
Changes/ 1.0-1.1 - Added rotation types 1.1-1.2 - Added Hermite for float and vector
<lsl> //===================================================// // Interpolation Library 1.2 // // "May 12 2008", "6:16:20 GMT-0" // // Copyright (C) 2008, Nexii Malthus (cc-by) // // http://creativecommons.org/licenses/by/3.0/ // //===================================================//
float fLin(float v0, float v1,float t){
return v0*(1-t) + v1*t;}
float fCos(float v0,float v1,float t){
float F = (1 - llCos(t*PI))/2; return v0*(1-F)+v1*F;}
float fCub(float v0,float v1,float v2,float v3,float t){
float P = (v3-v2)-(v0-v1);float Q = (v0-v1)-P;float R = v2-v0;float S = v1; return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}
float fHem(float v0,float v1,float v2,float v3,float t,float tens,float bias){
float t2 = t*t;float t3 = t2*t; float a0 = (v1-v0)*(1+bias)*(1-tens)/2; a0 += (v2-v1)*(1-bias)*(1-tens)/2; float a1 = (v2-v1)*(1+bias)*(1-tens)/2; a1 += (v3-v2)*(1-bias)*(1-tens)/2; float b0 = 2*t3 - 3*t2 + 1; float b1 = t3 - 2*t2 + t; float b2 = t3 - t2; float b3 = -2*t3 + 3*t2; return ( b0 * v1+b1 * a0+b2 * a1+b3 * v2 );}
vector vLin(vector v0, vector v1,float t){
return v0*(1-t) + v1*t;}
vector vCos(vector v0,vector v1,float t){
float F = (1 - llCos(t*PI))/2; return v0*(1-F)+v1*F;}
vector vCub(vector v0,vector v1,vector v2,vector v3,float t){
vector P = (v3-v2)-(v0-v1);vector Q = (v0-v1)-P;vector R = v2-v0;vector S = v1; return P*llPow(t,3) + Q*llPow(t,2) + R*t + S;}
vector vHem(vector v0,vector v1,vector v2,vector v3,float t,float tens,float bias){
float t2 = t*t;float t3 = t2*t; vector a0 = (v1-v0)*(1+bias)*(1-tens)/2; a0 += (v2-v1)*(1-bias)*(1-tens)/2; vector a1 = (v2-v1)*(1+bias)*(1-tens)/2; a1 += (v3-v2)*(1-bias)*(1-tens)/2; float b0 = 2*t3 - 3*t2 + 1; float b1 = t3 - 2*t2 + t; float b2 = t3 - t2; float b3 = -2*t3 + 3*t2; return ( b0 * v1+b1 * a0+b2 * a1+b3 * v2 );}
rotation rLin(rotation r0,rotation r1,float t){
// Spherical-Linear Interpolation float ang = llAngleBetween(r0, r1); if( ang > PI) ang -= TWO_PI; return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*t);}
rotation rCos(rotation r0,rotation r1,float t){
// Spherical-Cosine Interpolation float f = (1 - llCos(t*PI))/2; float ang = llAngleBetween(r0, r1); if( ang > PI) ang -= TWO_PI; return r0 * llAxisAngle2Rot( llRot2Axis(r1/r0)*r0, ang*f);}
rotation rCub(rotation r0,rotation r1,rotation r2,rotation r3,float t){
// Spherical-Cubic Interpolation // r0 = Start, r1 = End, r2 and r3 affect path of curve! return rLin( rLin(r0,r1,t), rLin(r2,r3,t), 2*t*(1-t) );}
default{state_entry(){}}
</lsl>