# LlEuler2Rot

 LSL Portal

## Contents

Function: rotation llEuler2Rot( vector v );
 16 Function ID 0 Forced Delay 10 Energy

Returns a rotation representation of the Euler Angles v.

 • vector v – Angle

## Specification

The Euler angle vector (in radians) is converted to a rotation by doing the rotations around the 3 axes in Z, Y, X order. So `llEuler2Rot(<1.0, 2.0, 3.0> * DEG_TO_RAD)` generates a rotation by first rotating 3 degrees around the global Z axis, then rotating the result around the global Y axis, and finally rotating that 1 degree around the global X axis.

## Examples

```default
{
state_entry()
{
vector input = <73.0, -63.0, 20.0> * DEG_TO_RAD;
rotation rot = llEuler2Rot(input);
llSay(0,"The Euler2Rot of "+(string)input+" is: "+(string)rot );
}
}```

## Notes

```v/=2;
rotation k = <0.0, 0.0, llSin(v.z), llCos(v.z)> * <0.0, llSin(v.y), 0.0, llCos(v.y)> * <llSin(v.x), 0.0, 0.0, llCos(v.x)>;```

### Functions

 • llRot2Euler

## Deep Notes

#### Signature

```function rotation llEuler2Rot( vector v );
```
This article wasn't helpful for you? Maybe the related article at the LSL Wiki is able to bring enlightenment.